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The aim of this section is to present the concepts and results of newtonian dynamics which are

required in a discussion of rigii-body motion. The detailed analysis of particular rigid-body

motions is not included. The section contains a few topics which, while not directly needed in

t}i\e g&::;:].:sion, either serve to round out the presentation or are required elsewhere in this
il .

INTRODUCTION

The study of classical dynamics is founded on Newton's three laws of motion and on the
accompanying assumptions of the existence of absolute space and absolute time. In addition,
in problems in which gravitational effects are of importance, Newton’s law of gravitation is
adopted. The object of the study is to enable one to predict, given the initial conditions and
the forces which act, the evolution in time of 2 mechanical system or, given the motion, to
determine the forces which produce it.

The mathematical formulation and development of the subject can be approached in two
ways. The vectorial method, that used by Newton, emphasizes the vector quantities force and
acceleration. The analytical method, which is largely du€ to Lagrange, utilizes the scalar quan-
tities work and energy. The former method is the more physical and generally possesses the
advantage in situations in which dissipative forces are present The latter is more mathematical
and accordingly is very useful in developing powerful general results.

3.1 THE BASIC LAWS OF DYNAMICS

The “ficst law of motion” states that a body which is under the action of no force remains at
rest or continues in uniform motion in a straight line. This statement is also known as the “law
of inertia,” inertia being that property of a body which demands that a force is necessary to
change its motion. “Inertial mass” is the numerical measure of inertia. The conditions under
which an experimental proof of this faw could be carried out are clearly not attainable.

In order to investigate the motion of a system it is necessary t0 choose a frame of reference,
assumed to be rigid, relative to which the displacement, velocity, etc, of the system are to be
measured. The law of inertia immediately classifies the possible frames of reference into two
types. For, suppose that in a certain frame S the law is found to be true; then it must also be
true in any frame which has a constant velocity vector relative to S, However, the law is found
not 1o be true in any frame which is in accelerated motion relative to 5. A frame of reference
in which the law of inertia is valid is called an “inertial frame,” and any frame in accelerated
motion relative to it is said to be “noninertial.” Any one of the infinity of inertial frames can
claim to be at rest while all others are in motion relative to it. Hence it is not possible to
distinguish, by observation, between a state of rest and one of uniform motion in a straight line.
The transformation rules by which the observations relative to tvo inertial frames are correfated
can be deduced from the second law of motion. ’

Newton's “second law of motion” states that in an inertial frame the force acting on a mass
is equal to the time rate of change of its linear momentum. “Linear momentum,” a vector, is
defined 10 be the product of the inertial mass and the velocity. The law can be expressed in
the form

dfde(me) = F 3.1
which, in the many cases in which the mass m is constant, reduces to
ma =F (3.2)

where a is the acceleration of the mass.
The “third law of motion,” the “law of action and reaction,” states that the force with which
a mass m, acts on a mass m, is equal in magnitude and opposite in direction to the force which
m; exerts on m. The additional assumption that these forces are collinear is needed in some
applications, e.g., in the development of the equations governing the motion of a rigid body.
The “law of gravitation™ asserts that the force of attraction between two point masses is
proportional to the product of the masses and inversely proportional to the square of the
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distance between them. The masses involved in this formula are the gravitational masses. The
fact that falling bodies possess identical accelerations leads, in conjunction with Eq. (3.2), 10 the
proportionality of the inertial mass of a body to its gravitational mass. The results of very precise
experiments by Eotvds annd others show that inertial mass is, in fact, equal to gra\'fitational
mass. In the future the word mass will be used without either qualifying adjective.

If 2 mass in motion possesses the position vectors r, and r, relative to the origins of two
inertial frames S, and S,, respectively, and if further S, and S, have a relative velocity V, then it
follows from Eq. (3.2) that ’

r, = r, + Vi, + const (3.3)
t, = ¢, + const

in which ¢, and ¢, are the times measured in S, and S,. The transformation rules Eq. (3.3), in
which the constants depend merely upon the choice of origin, are called galilean transforma-
tions. It is clear that acceleration is an invariant under such transformations.
The rules of transformation between an inertial frame and a noninertial frame are consid-
erably more complicated than Eq. (3.3). Their derivation is facilitated by the application of the
- following theorem: a frame S, possesses relative to 2 frame § an angular velocity w passing
through the common origin of the two frames. The time rate of change of any vector A as
measured in S is related to that measured in §, by the formula

(dA/dt)s = (dA/dt)s, + & X A (3.4)

The interpretation of Eq. (3.4) is clear. The first term on the right-hand side accounts for the
change in the magnitude of A, while-the second corresponds to its change in direction.

If § is an inertial frame and S, is a frame rotating relative to it, as explained in the statement
of the theorem, S, being therefore noninertial, the substitution of the position vector £ for A
in Eq. (3.4) produces the result

Vs = Vi T X £ (35)

In Eq. (3.5) V,,, represents the velocity measured relative to S, v, the velocity relative to §,,
and @ X r is the transport velocity of a point rigidly attached to §,. The law of transformation
of acceleration is found on a second application of Eq. (3.4), in which A is replaced by v,
The result of this substitution leads directly 0

(@efdi?), = (d*efdtP)s, + @ X (@ X £) + @ X 1 + 200 X Vi (3.6)

in which @ is the time derivative, in either frame, of w. The physical interpretation of Eq. (3.6)
can be shown in the form

s = A+ Bans T Acoe @37

where a_, represents the Coriolis acceleration 260 X Vy The results, Egs. (3.5) and (3.7),
constitute the rules of transformation berween an inertial and a nonintertial frame. Equation
(3.7) shows in addition that in a noninertial frime the second law of motion takes the form

maye = Fpg — Ma = MAgans (38)
The modifications required in the above formulas are easily made for the case in which §, is

translating as well as rotating relative to S. For, if D(¢) is the position vector of the origin of the
§, frame relative to that of S, Eq. (3.5) is replaced by

Voo = @D/dt)g + Vi + @ X 1
and consequently, Eq. (3.7) is replaced by '
a,, = (@DfAP)s + Bl + Aygns T Beor

In practice the decision as to what constitutes an inertial frame of reference depends upon
the accuracy sought in the contemplated analysis. In many cases a set of axes rigidly attached
to the earth’s surface is sufficient, even though such a frame is noninertial to the extent of its
taking part in the daily rotation of the earth about its axis and also its yearly rotation about the
sun. When more precise results are required, a set of axes fixed at the center of the earth may
be used. Such a set of axes is subject only to the orbital motion of the earth. In still more
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demanding circumstances, an inertial frame is taken to be one whose orientation relative to the
fixed stars is constant.

3.2 THE DYNAMICS OF A SYSTEM OF MASSES

The problem-of locating a system in space involves the determination of a certain number of
variables as functions of time. This basic number, which cannot be reduced without the im-
position of constraints, is characteristic of the system and is known as its number of degrees of
freedom. A point mass free to move in space has three degrees of freedom. A system of two
point masses free to move in space, but subject to the constraint that the distance between them
remains constant, possesses five degrees of freedom. It is clear that the presence of constraints
reduces the number of degrees of freedom of a system.

Three possibilities arise in the analysis of the motion-of-mass systems. First, the system may
consist of a small number of masses and hence its number of degrees of freedom is small.
Second, there may be a very large number of masses in the system, but the constraints which
are imposed on it reduce the degrees of freedom to a small number; this happens in the case
of a rigid body. Finally, it may be that the constraints acting on a system which contains a large
number of masses do not provide an appreciable reduction in the number of degrees of
freedom. This third case is treated in statistical mechanics, the degrees of freedom being reduced

* by statistical methods.

In the following paragraphs the fundamental results relating to the dynamics of mass systems
are derived. The system is assumed to consist of 7 constant masses m; (f = 1,2, ..., n). The
position vector of m;, relative to the origin O of an inertial frame, is denoted by r,. The force
acting on m, is represented in the form

F=F+ YF, (3.9)
=1

in which F¢ is the external force acting on m,, F,, is the force exerted on m; by m,, and F, is
zero.

3.2.1 The Motion of the Center of Mass

The motion of m, relative to the inertial frame is determined from the equation

& av,
B+ 2 F, = m ) (3.10)
j=1 dt
On summing the 77 equations of this type one finds
n n n d :
F+YSF =2 mS 31D
i=17=1 i=1 dr

where F¢ is the resultant of all the external forces which act on the system. But Newton's third
law states that

F,

y = —E

i
and hence the double sum in Eq. (3.11) vanishes. Further, the position vector £ of the center
of mass of the system relative to O is defined by the relation
M, = 3 myg, (312)
i=1

in which M denotes the total mass of the system. It follows from Eq. (3.12) that

(3.13)
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and therefore from Eq. (3.11) that
F = M d’n /dt? (314)

which proves the theorem: the center of mass moves as if the entire mass of the system were
concentrated there and the resutant of the external forces acted there. -
Two first integrals of Eq. (3.14) provide useful results [Egs. (3.15) and (3.16)}:

3
f Fo dt = Mv(1) — Mv(,) (3.15)
1

.The integral on the left-hand side is called the “impulse” of the external force. Equation (3.15)
shows that the change in linear momentum of the center of nfass is equal to the impulse of the
external force. This leads to the conservation-of-linear-momentum theorem: the linear momen-
tum of the center of mass is constant if no resultant external force acts on the system or, in
view of EQ. (3.13), the toral linear momentum of the system is constant if no resultant external
force acts:

2 2
J, Fe - dr, = Mvﬁ] (3.16)
* t
which constitutes the work-encrgy theorem: the work done by the resultant external force acting
at the center of mass is equal o the change in the kinetic energy of the center of mass.
In certain cases the external force F¢ may be the gradient of a scalar quantity V which is a
function of position only. Then

F* = — av/ar,
and Eq. (3.16) wakes the form .
BMvZ + VE =0 (3.17)

If such a function V exists, the force field is said to be conservative and Eq. (3.17) provides the
conservation-of-energy theorem. .

3.2.2 The Kinetic Energy -of a System

The total kinetic energy of 2 sysicm is the sum of the kinetic energies of the individual masses.
However, it is possible to cast this sum into a form which, frequently makes the calculation of
the kinetic energy less difficult. The total kinetic energy of the masses in their motion relative
o O is .

T=12m,vf
2 i=1
but = +a

where @, is the position vector of m, relative to the system center of mass C (see Fig. 3.1).
Hence ’

1 n ” . 1 n .
T=-3 mil + S me @, + = ma?
25 i=1 2 /=
7
but S mo, =0
i=1
by definition, and so “
T = WMit + §D, mo? (3.18)
i=1

which proves the theorem: the total kinetic energy of a system is equal to the kinetic energy of
the center of mass plus the kinetic energy of the motion relative to the center of mass.
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(o] ”
‘Fig. 3.1 Fig. 3.2

3.2.3 Angular Momesntum of a System
(Moment of Momentum).

Each mass m, of the system has associated with it a linear momentum vector m,v;. The moment
of this momentum about the point O.is £, X m,v, The moment of momentum of the motion
of the system relative to O, about O, is

H(O) = 2 T, X my,
=
It follows that
d d’r,
- H(O) = 2 X m; d’z’
which, by Eq. (3.10), is equivalem o
d
~ HO) = S‘rxerer (3.19)

1t is now assumed that, in addition to the validity of Newton's thlrd law, the force F,; is collinear
with F; and acts along the line joining m, to my; ie, the internal forces are central forces.
Consequemly, the double sum in Eq. (3.19) vanishes and

-‘1 H(O) = 2 r, X F¢ = M(D) (3.20)
i=1

where M{O) represents the moment of the external forces about the point O. The following
extension of this result to certain noninertial points is useful. .

. Let A be an arbitrary point with position vector a relative to the inertial point O (see Fig.
3.2). If p, is the position vector of m, relative to A, then in the notation already developed

H@A) = 2p,xrn——~2(r a)xrn,‘; H(O) — a X Mv,
Thus (d/dH(A) = (d/d)H(O) — a X Mv, — a X M(dv /adt), which reduces on application
of Egs. (3.14) and (3.20) 1o
{d/dDH(A) = M(A) — a X Mv,
The validity of the result
(d/dDH(A) = M(A) (3.21)
is assured if the point A satisfies either of the conditions

1. a = 0; i.e, the point A is fixed relative to O.
2. ais parallel to v,; i.e., the point A is moving parallel to the center of mass of the system..
A particular, and very useful, case of condition 2 is that in which the point A is the center

of mass. The preceding results (Egs. (3.20) and (3.21)] are contained in the theorem: the time
rate of change of the moment of momentum about a point is equal to the moment of the
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ext.emal forces about that point if the point is inertial, is moving parallel to the center of mass,
or is the center of mass.

As a corollary to the foregoing, one can state that the moment of momentum of a system
about a point satisfying the conditions of the theorem is conserved if the moment of the external
forces about that paint is zero. .

The moment of momentum about an arbitrary point A of the motion relative 50 A is

d d n n
H.(4) = Zx P X m -—d':' = 3 o X mk, = &) = HQ) + 4 x 3 mp, (322)
= i= =1

If the point A is the center of mass C of the system, Eq. (3.22) reduces to
H(O) = H(O) (3.23)
which frequently simplifies the calculation of H(C).

Additional general theorems of the type derived above are available in the literature. The
present discussion is limited to the more commonly applicable results.

3.3 THE MOTION OF A RIGID BODY

As mentioned earlier, a rigid body is a dynamic system that, although it can be considered to
consist of a very large number of point masses, possesses a small number of degrees of freedom.
The rigidity constraint reduces the degrees of freedom to six in the most general case, which
is that in which the body is translating and rotating in space. This can be seen as follows: The
position of a rigid body in space is determined once the positions of three noncollinear points
in it are known. These three points have nine coordinates, among which the rigidity constraint
prescribes three relationships. Hence only six of the coordinates are independent. The same
result can be obtained otherwise. :

Rather than view the body as a system of point masses, it is convenient to consider it to have
a mass density per unit volume. In this way the
formulas developed in the analysis of the motion
of mass systems continue to be applicable if the
sums are replaced by integrals.

The six degrees of freedom demand six equa-
tions of motion for the determination of six vari-
ables. Three of these equations are provided by Eq.
(3.14), which describes the motion of the center of
mass, and the remaining three are found from mo-
ment-of-momentum considerations, e.g.; Eq. (3.21).
It is assumed, therefore, in what follows that the
motion of the center of mass is known, and the
discussion is limited to the rotational motion of the
rigid body about its center of mass C*

Let « be the angular velocity of the body. Then
the moment of momentum about C is, by Eq. (3.3),

x
Fig. 3.3

H(C) = J; rX (o X rrpdv (3.24)

where r is now the position vector of the element of volume 4V relative to C (see Fig. 3:3), p’
is the density of the body, and the integral is taken over the volume of the body. By a direct
expansion one finds
rIX(@XN=ro-rfr-o=re—rmo
=fl-o—rr - w=(l-1)o -
and hence H(C) = KC)- » T (3.25)

" *Rotational motion about any fived point of the body is treated in a similar way.
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where Ic = Lp(r’l - 1) dv (3.26)

is the inertia tensor of the body about C.

In Eq. (3.26), I denotes the identity tensor. The inertia tensor can be evaluated once the
value of p and the shape of the body are prescribed. We now make a short digression to discuss
the structs® and properties of 1(C). )

For definiteness let x, , and z be an orthogonal set of cartesian axes with origin at C (see
Fig. 3.3). Then in matrix notation

I.\'.v -l.\:v' - I.u
o) =| - Ty by —1
=l Iy I,

where Ix.\' = L“yz + zz)dV

It is clear that:

1. The tensor is second-order symmetric with real elements. ‘
2. The elements are the usual moments and products of inertia.
3. The moment of inertia about a line through C defined by a unit vector e is
e IC)e
4. Because of the property expressed in condition 1, it is always possible to determine at C a
set of mutually perpe?dicular axes relative to which I(C) is diagonalized.

Returning to the analysis of the rotational motion, one sees that the inertia tensor I(C) is
time-dependent unless it is referred to a set of axes which rotate with the body. For simplicity
the set of axes S, which rotates with the body is chosen to be the orthogonal set in which I(C)
is diagonalized. A space-fixed frame of reference with origin at C is represented by . Accord-
ingly, from Egs. (3.4) and (3.21),

Ud/dnR(C)s = (d/dDH(C)}s, + » X H(C) = M(C) 327

which, by Eq. (3.25), reduces to . )
IC) - (dw/dt) + @ % KC) - v = M(C) (3.28)
where H(C) = i o, + jl,0, + k0, (3.29)

In Eq. (3.29) the x, y, and z axes are those for which

I. 0 0
K)y=\10 1, 0
0 0 I,

and i, §, k are the conventional unit vectors. Equation (3.28) in scalar form supplies the three
equations needed to determine the rotational motion of the body. These equations, the Euler
equations, are
Ix.\‘(dmx/ an + (‘)y‘ox(lx.z - l)_-") = Mx
L(dw/dt) + w00, — =) = M, (330)
L(dw [dt) + oo, = L) =M,
The analytical integration of the Euler equations in the general case defines a problem of
classical difficulty. However, in special cases solutions can be found. The sources of the sim-
plifications in these cases are the symmetry of the body and the absence of some components

of the external moment. Since discussion of the various possibilities lies outside the scope of
this section, reference is made to Refs. 1, 2, 6, and 7 and, for a survey of recent work, to Ref. 3.
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Of course, in situations in which energy or moment of momentum, or perhaps both, are
conserved, first integrals of the motion can be written without employing the Euler equa(yions
To do so it is convenient to have an expression for the kinetic energy 7 of the rotating body.
This expression is readily found in the following manner.

The kinetic energy is

T=ifvp(mxr)zdv

=§jvpo-[yx(mxr)1dv

which, by Egs. (3.24), (3.25), and (3.26), is
T=ta KO » (331

I. 0 O W,
2r = (0w )0 4, 0 J{o
0 0 Iy/\e,

Equation (3.31) can be put in a simpler form by writing
T = lu¥(o/w) - 1C) * (0/w)
and hence T = 4,0 (3.32)

In Eq. (3.32) I, is the moment of inertia of the body about the axis of the angular velocity
vector . :

or, in matrix notation,

3.4 ANALYTICAL DYNAMICS

The knowledge of the time dependence of the position vectors r,(¢) which locate an n-mass
system relative to a frame of reference can be attained indirectly by determining the dependence
upon time of some parameters ¢; (f = 1,..., m) if the functional relationships

,-,=,_-,(qj,;) i=1,...mj=1..,m : (3.33)

are known. The parameters g, which completely determine the position of the system in space
are called “generalized coordinates.” Any m quantities can be used as generalized coordinates
on condition that they uniquely specify the positions of the masses. Frequently the g, are the
coordinates of an appropriate curvilinear system.

It is convenient to define two types of mechanical systems:

1. A “holonomic system” is one for which the generalized coordinates and the time may be
arbitrarily and independently varied without violating the constrafnts: "~ ~

2. A “nonholonomic system” is such that the generalized coordinates and the time may not be
arbitrarily and independently varied because of some (say s) nonintegrablé constraints of
the form

IE}Aﬁdq,+A,dl=0 i=12..,s (334)
In the constraint equations [Eq. (3.34)] the A, and A, represent functions of the g, and #. Holo-
nomic and nonholonomic systems are further classified as “rheonomic” or “scleronomic,”
depending upon whether the time 7 is explicitly present or absent, respectively, in the constraint
equations.
3.4.1 Generalized Forces and d’Alembert’s Principle

A virtual displacement of the system is denoted by the set of vectors dr,. The work done by the
forces in this displacement is :

n
W = 'Z‘ F, - b1, (335)
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If the force F,, acting on the mass m,, is separable in the sense that

F =F + F i (3.36)
in which the first term is the applied force and the second the force of constraint, then
< < of ar,
W = F4 + F¢ —L3g, + ~ &
2 ) [Z_Zl ks ' (337)
The generalized applied forces and the generalized forces of constraint are defined by
“ or
4 — Fo . — .
10 “~ 3, (3.38)
N or;
and Q=2 E- (339)
i=1 q_/
respectively. Hence, Eq. (3.37) assumes the form
) m ” n ar‘
bW = 3 07 dq + 3 0fbg, + 3 (B + F) - i (3.40)
/= = i=

If the virtual displacement is compatible with the instantaneous constraints 8 = 0, and if in
such a displacement the forces of constraint do work, e.g., if sliding friction is absent, then

W = ;2. Q7 8q, (3.41)
The assumption that a function Vg, 1) exists such that
QF = —dV/ag,
leads to the result
W= -8V (3.42)

In Eq. (3.42), Vg, #) is called the potential or work function.
The first step in the introduction of the kinetic energy of the system is taken by using
d'Alembert’s principle. The equations of motion {Eq. (3.10)] can be written

F,—-mi =0
and consequently
> (F - mi) - br, = (3.43)

=1

The principle embodied in Eq. (3.43) constitutes the extension of the principle of virtual work
to dynamic systems and is named after d’Alembert. When attention is confined to 3, which
represent virtual displacements compatible with the instantaneous constraints and to forces F;
- which satisfy Egs. (3.36) and (3.41), the principle states that

_5_‘,] Qf 8q, = 121 mi, - Of; (3.44)
~ <

3.4.2 The Lagrangec Equations

The central equations of analytical mechanics can now be derived. These equations, which were
developed by Lagrange, are presented here for the general case of a rheonomic nonholonomic
system consisting of 7 masses m,, m generalized coordinates g, and s constraint equations

D Aydg +Aydt =0 k=125 (3.45)
j=1

The equations are found by writing the acceleration terms in d’Alembert’s principle {Eq. (3.43)]
in terms of the kinetic energy T and the generalized coordinates. By definition
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n
T=1% 21: mi}
. < or;dg; | o,
where = —L 4 -t =
| & Froaga T i=12...,m,
Thus of,/dq, = or,/oq, at,/aq, = (d/dt)(8r,/dq)
- . dor T & ar,
oT/dg, = >, mi,-——=— and — = £ —t
VIR Gy, B T A
Accordingly,
d ar T im o, (346)
—— - — = % o =12..,m .
drag g A aq 7
and by summing over all values of 7, one finds
& (dor ar) :
- - = &, B, .
H(qu ) 2 it b, (3.47)
& or,
because or, = >, —
! /=1 0g; Sq/
for instantaneous displacements. From Egs. (3.44) and (3.47) it follows that
- {d aT ar
—— - = -0%18g, =0 48
= <dt oq, g, Q’) % (3:48)

The 84, which appear in Eq. (3.48) are not independent but must satisfy the instantaneous
constraint equations

D Aydg =0 k=125 (3.49)
j=1

The “elimination” of s of the 8¢, between Egs. (3.48) and (3.49) is effected, in the usual way,
by the introduction of s Lagrange multipliers A, (& = 1, 2, ..., 5). This step leads directly to the
equations ‘

dor or & .

- - = - kedy i=12,..,m 3.50

Gy aq -0 AMw I (350)
These m second-order ordinary differential equations are the Lagrange equations of the system.
The general solution of the equations is not available.* For a holonomic system with 72 degrees
of freedom, Eq. (3.50) reduces to

%%y—%zgf i=1..,n (3.51)
In the presence of a function V such that
Qf = —BV/aq/
and av/eg = 0
Eqs. (3.51) can be written in the form 7
g—:%:;—f—%;—f=o /=12 ...,n (352)
in which E=T-V

The scalar function $—the lagrangian—which is the difference berween the kinetic and poten-
tial energies is all that need be known to write the Lagrange equations in this case.

*Nonholonomic problems are frequently more tractable by vectorial than by lagrangian methods.
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The major factor which contributes to the solving of Eq. (3.52) is the presence of ignorable
coordinates. In fact, in dynamics problems, generally, the possibility of finding analytical rep-
resentations of the motion depends on there being ignorable coordinates. A coordinate, say g,
is said to be ignorable if it does not appear explicitly in the lagrangian,; i.e., if

8%f/og, = 0 (3.53)
If Eq. (3.53) is valid, then Eq. (3.52) leads to
8%£/3g, = const = ¢,

and hence a first integral of the motion is available. Clearly the more ignorable coordinates that
exist in the lagrangian, the better. This being so, considerable effort has been directed toward
developing systematic means of generating ignorable coordinates by transforming from one set
of generalized coordinates to another, more suitable, set. This transformation theory of dynam-
ics, while extensively developed, is not generally of practical value in engineering problems.

3.4.3 The Euler Angles

To use lagrangian methods in analyzing the motion of a rigid body one must choose a set of
generalized coordinates which uniquely determines the position of the body relative 1o 3 frame
of reference fixed in space. It suffices to examine the motion of a body rotating about its center
of mass. :

An inertial set of orthogonal axes &, 7, and { with origin at the center of mass and a noninertial
set x, 3, and x fixed relative to the body with the same origin are adopted. The required
generalized coordinates are those which specify the position of the x, y, and z axes relative to
the & 7, and { axes. More than one set of coordinates which achieves this purpose can be found.
The most generally useful one, viz, the Euler angles, is used here.

The frame £, 7, and { can be brought into coincidence with the frame x, y, and z by three
finite rigid-body rotations through angles &, 8, and §,* in that order, defined as follows (see
Fig. 3.4): :

1. A rotation about the  axis through an angle ¢ to produce the frame x,, y;, 2,
2. A rotation about the x, axis through an angle 8 to produce the frame x;, y,, z,

3. A rotation about the z, axis through an angle { to produce the frame x;, ys, 23, which
coincides with the frame x, y, z

Each rotation can be represented by an orthogonal matrix operation so that the process of
getung from the inertial to the noninertial frame is

x, cosd sind O\[E 13 ‘
»ni=|-sind cosé Offn] =A|n (3.54a)
z) \ 0 o 1\ L

*This notation is nor universally adopted. See Ref. 5 for discussion.
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~
|

0 \/x X
cos® sin@ Jly | = Bl (3.54b)
-sin® cos8/\z,/ = \z

X3 cos§y sing O0\/x, X,
»l= —snn ¥ cos ¢ 0y} =0y - (354¢)
23 1/\z,; Z2

Consequently,
x 13 13
y}=CBA{w| =Dfn (3.55)
z g { )
€os § cos ¢ — cos 0 sin ¢ sin P cos ¥ sin ¢ + cos 8 cos ¢ sin ¥
4 —smlbcosda cos 8 sin & cos & ~sin ¢ sin & + cos 6 cos ¢ cos ¥
where D = €BA = [ sin § sin ¢ —sin @ cos ¢
sin ¢ sin @
cos ¥ sin 8
cos 9

Since A, B, and. C are orthogonal matrices, it fotlows from Eq. (3.55) that

b -

where the prime denotes the transpose of the marrix. From Eq. (3.55) one sees that, if the time
dependence of the three angles ¢ 8} ¥ is known, the- orfentation of the x, y, z and axes relative
to the & m, and { axes is determined; This time: dependence fs sought by attempting to solve
the Lagrange equations.

The kinetic energy T of the rotating Body is-found: frorms Eq. (3.31) to be

2T = I g0} + I,0f + Iee . (357)
in which the components of the angular velocity w-are provided by the matrix equation

w, C /o oy, fo '
w | = cBlo}i+ clo]; + o (3.58)
o, ) 9o/ \#

I ;e o Pl ‘ : (3:59)

none of the angles is ignorable. Hence consnderable difficulty- is 10 be expected in attempting
to solve the Lagrange equations if this inequatlity, Eq.-(3.59), holds. A similar inference could
be made on examining Egs. (3.30). The possibility of there being ignorable coordinates in the
problem arises if the body has axial, or so-called kinetic, symmeury about (say) the z axis. Then

wr=l_;;r=l'

It is to be noted that if

and, from Eq. (3.57), .
27 = I($?*sin? 0 + %) + I_(db cos 8 +: d)? , (3.60)
The angles ¢ and ¢ do not occur in Eq. (3.60). Whether or not they are ignorable depends on
the potential energy V(d, 8, ¥).

3.4.4 Small Oscillations of a System near Equilibrium

The Lagrange equations are particularly useful in ‘examining the motion of a system near a
position of equilibrium. Let the generalized coordinates ¢, 4. - - ., g,—the explicit appearance
of time being ruled out—represent the configuration of the system. It is not restrictive to assume
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the equilibrium position at
grandg, = -+ =q,=0

and,usince motion near this position is being considered, the g, and g, may be taken to be
small.
‘ The potential energy can be expanded in a Taylor series about the equilibrium point in the
orm

Z (o ; v )
Vg, -+ g = V(0) + —)g, — e
@ g0 = VO + 2 (*aql" *122 (aq.. DY A

In Eq. (3.61) the first term can be neglected because it merely changes the potential energy by
a constant and the second term vanishes because 3V/dg, is zero at the equilibrium point. Thus,
retaining only quadratic terms in g, one finds :

Vigy G = 4 Z > V,44 (3.62)
J

in which : Vv, = (3°V/3q,9g) = Vy (3.63)

are real constants.
The kinetic energy T of the system is representable by an analogous Taylor series

TG g = 42 2 T4 (3.64)
where Ty =Ty (3.65)

are real constants. The quadratic forms, Egs. (3.62) and (3.64), in matrix notation, a prime
denoting transposition are

v =144'Yq (3.66)
and T =14'9g 3.67)
In these expressions ¥ and F represent the matrices with elements V,, and T, respectively,

and g represents the column vector (gy, - . ., g,). The form of Eq. (3.67) is necessarily positive
definite because of the nature of kinetic energy. Rather than create the Lagrange equations in
terms of the coordinatés g, a new set of generalized coordinages p; is introduced in terms of
which the energies are simultaneously expressible as quadratic forms without cross-product
terms. That the transformation to such coordinates is possible can be seen by considering the
equations

Vo, =A\Ib, j=12,..,n (3.68)

in which A, the roots of the equation
v -l =0
are the eigenvalues—assumed distinct— and b; are the corresponding eigenvectors. The matrix
of eigenvectors b, is symbolized by B, and the diagonal matrix of eigenvalues A, by A. One can
write ¥
bVb, = \bTb,
and bVe, = M5 TY;
because of the symmetry of ¥ and J. Thus, if A, # \,, it follows that
bJb, =0 k#j

and, since the eigenvectors of Eq. (3.68) are each undetermined to within an arbitrary multi-
plying constant, one can always normalize the vectors so that

b Ib, = 1 369
Hence B'IB =1
where 1 is the unit matrix. But

VB = IBA (3.70)

and so B'YB = B'IBA = A (3.71)

04 A
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Furthermore, denoting the complex conjugate by an overbar, one has

v, = 395,
and bVE, = Nb,95, . (3.72)
since ¥ and ¥ are real. However, .
ALRRY AL (3.73)
because V and J are symmetric. From Egs. (3.72) and (3.73) it follows that
- \)b;Ib, = 0 (3.74)

The symmetry and positive definiteness of J ensure that the form b;EFEj is real and positive
definite. Consequently the eigenvalues A, and eigenvectors b, are real. Finally, one can solve
Eq. (3.68) for the eigenvalues in the form

N = bV /b, Tb, (3.75)
The transformation from the g, to the p, coordinates can now be made by writing
q = Bp
from which . = 4g'Vq = 3p'B'VBp = $p'Ap (3.76)
and T =349 = }'B'IBp = #'lp 377

It is seen from Egs. (3.76) and (3.77) that V and 7 have the desired forms and that the corre-
sponding Lagrange equations (3.52) are :

dpjar + wip, =0 i=1..,n (3.78)

where w? = A, If the equilibrium position about which the motion takes place is stable, the
w? are positive. The eigenvalues A, mus: then be positive, and Eq. (3.75) shows that V is positive
definite. In other words, the potential energy is a minimum at a position of stable equilibrium.
In this case, the motion of the system can be analyzed in terms of its normal modes—the
n harmonic oscillators Eq. (3.78). If the matrix V is not positive definite, Eq. (3.75) indicates
that negative eigenvalues may exist, and hence Eqgs. (3.78) may have hyperbolic solutions. The
equilibrium is then unstable. Regardiess of the nature of the equilibrium, the Lagrange equations
(3.78) can always be arrived at, because it is possible to diagonalize simultaneously two quadratic
forms, one of which (the kinetic-energy matrix) is positive definite.

3.4.5 Hamilton’s Priuciple .

In conclusion it is remarked that the Lagrange equations of motion can be arrived at by methods
other than that presented above. The point of departure adopted here is Hamilton’s principle,
the statement of which for holonomic systems is as follows.

Provided the initial (¢,) and final (¢,) configurations are prescribed, the motion of the system
from time ¢, to time #, occurs in such a way that the line integral

72
L &L dt = exiremum
1

where £ = T — V. That the Lagrange equations [Eq. (3.52)] can be derived from this principle
is shown here for the case of a single-mass, one-degree-of-freedom system. The generalization
of the proof to include an n-degree-of-freedom system is made without difficulty.
The lagrangian is
. g q.0=T-V

in which ¢ is the generalized coordinate and g(#) describes the motion that actually occurs. Any
other motion can be represented by

g = q() + f(1) 379
in which f(¢) is an arbitrary differentiable function such that f(¢;) and f(,) = 0 and g is a
parameter defining the family of curves 4(#). The condition

2 .
J: £ (g G 1) dt = extremum
1



