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PREFACE

Solid state electronics is undergoing rapid changes driven by heteroepitaxy, lithography, and new
device concepts. While ten years ago Si was the material of choice in solid state electronics, now GaAs,
InGaAs ,AlAs,InP, Ge,cte. have all become quite important. The advent of semiconductor lasers and
integrated optoelectronic circuits has led to a flurry of activities in compound semiconductors.
Additionally, the remarkable advances in the thin film epitaxy have allowed active semiconductor devices
with sub-three-dimensional properties and built-in controlled biaxial strain due to lattice mismatch.

This book addresses three main areas of interest: i) electronic and optical properties of low-
dimensional semiconductor materials: ii) principal physics of quantum electronic devices, iii) principal
physics of quantum optical devices. These areas will provide readers with an intimate knowledge of the
new material properties on which novel solid state electronic devices such as quantum diode, and small size
transistor, high electron mobility transistor are based, leading to the very front of the development of
material and device research. The link between basic physics on which the real devices are based and the

output from the real devices is closely observed in the book.
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Chapter 1

Elemental and compound
semiconductors

1.1 Crystalline nature of solids

The intrinsic property of a crystal is that the environment around a given
atom or group of atoms is cxactly the same as the environment around
another atom or similar group of atoms. To understand and to define the
crystal structure, two important concepts are introduced, i.e., the lattice
and the basis.

The lattice represents a set of points in the space which form a periodic
structure. Each point sees exactly the same environment. A building block
of atoms, called the basis, is then attached to each lattice point, yielding a
crystal structure. :

An important property of a lattice is the ability to define three vectors,
ay, az, and ag, such that any lattice point R/ can be obtained from any
other lattice point R by a translation

R/:R—}—mlal—}-m?ag—f—mgag s (11)

where my, ms, and mg are three integers. The translation vectors, ay, ag,
and ag are called primitive if the volume of the cell formed by them is the
smallest possible.

There are 14 types of lattices in three dimensional space. We shall fo-
cus on the cubic lattice which is the structure taken by all semiconductors.
There are three kinds of cubic lattices: simple cubic, body-centered cubic
and face-centered cubic. The simple cubic lattice is generated by the prim-
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Figure 1.1: (a) Face-centered cubic lattice. (b) The zincblende crystal
structure.

itive vectors of a; = axp, az = ayp, and az = azp, where xq, yg, and zg
are the three unit vectors of a normal rectangular Cartesian coordinate.

The face-centered cubic Bravais lattice (fcc) (see Fig. 1.1): To construct
the fcc lattice we add to the simple cubic lattice an additional point in the
center of each square face. The fcc Bravais lattice is of great importance,
since an enormous variety of solids crystalise in this form with an atom (or
ion) at each lattice site.

Essentially all semiconductors of interest for electronics and optoelec-
tronics have the fcc structure. However, they have two atoms per basis.
The coordinates of the two basis atoms are (000) and (a/4)(111) (indicated
in Fig. 1.1b by two arrows). If the two atoms of the basis are identical, the
structure is called the diamond structure. Semiconductors such as silicon,
germanium and carbon fall into this category. If the two atoms are different,
for examples, GaAs, AlAs, CdS, the structure is called zincblende.

Semiconductors with the diamond structure are often called elemen-
tal semiconductors, while the zincblende semiconductors are usually called
compound semiconductors. The compound semiconductors are also de-
noted by the positions of the atoms in the periodic table, for examples
GaAs, AlAs and InP are called I1I-V semiconductors while CdS, CdSe and
CdTe are called I1-VI semiconductors.

Many of the properties of crystals and many of the theoretical tech-
niques used to describe crystals derive from the periodicity of crystalline
structures. This suggests the use of Fourier analysis as an analytical tool. In
the analysis of periodic time varying fields (for examples, the acoustic signal
analysis and radio signal analysis) we often do much of the analytical work
in the frequency domain rather than in the time domain. In analogy with
the time—frequency duality, there is a corresponding real space-reciprocal
space or wave vector space duality for crystal problem discussions. Many
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concepts are best understood in terms of functions of the wave vector. We
prefer to describe a wave with wavelength A as a plane wave with wave vec-
tor k of magnitude 2r/A and propagation direction perpendicular to the
wave front. The space of the wave vectors is called the reciprocal space,
the analogue of the frequency domain for the time problem.

A simple transformation is carried out to map the real space lattice into
the reciprocal space (k-space)

b, = Qﬁ_w 7
a; -as X ag
by = gp_23Xa ,
ai -as X ag
by = 2r—2 X3 (1.2)
a) ras X ag
A general vector
G = mpb; + msby + mabs (L.3)

is called a reciprocal lattice vector, where the m;, my and mg are three
integers (either positive or negative). It is worth noting the special relation

exp(1G-R) =1, (1.4)

where R is a lattice vector in Eq. (1.1) but often called the direct lattice
vector to distinguish it from the reciprocal lattice vector.

So far we have discussed crystal structures that are present in natu-
ral semiconductors. These structures are the lowest free energy config-
uration of the solid state of the atoms. Since the electrical and optical
properties of the semiconductors are completely determined by the crystal
structures, artificial structures, e.g., heteromaterials (among them the well-
known superlattices have been fabricating even since mid-1970s inspired by
the pioneering work of Esaki and Tsu at IBM) grown by heteroepitax-
ial crystal growth techniques such as molecular beam epitaxy (MBE) and
metal-organic chemical vapor deposition (MOCVD) have made a tremen-
dous impact on the semiconductor physics, the semiconductor technology
and the semiconductor electronic and optoelectronic device industry.

Since the new heteroepitaxial techniques allow one to grow heterostruc-
tures with atomic control, one can change the periodicity of the crystal
in the growth direction. This leads to the concept of superlattices where
two (or even more) semiconductors A and B are grown alternately with
thickness d4 and dp respectively. The periodicity of the superlattice in the
growth direction is then d4 + dp. An AlGaAs/GaAs quantum well grown
by molecular beam epitaxy is illustrated in Fig. 1.2. Superlattices that have
been grown can be placed in three general categories: i) lattice matched,
ii) latticed strained, and iii) lattice strained with intermediate substrate.
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Figure 1.2: Schematic diagram illustrating the growth of a AlGaAs/GaAs
multiple quantum well by MBE. Deposition of (a) (Al,Ga)As, (b) GaAs.
The system is under high vacuum.

1.2 Electrons in solids

We start with the real space Schrodinger equation for a periodic lattice
structure
{—h?vz

2m

" vm] W) = Bo() | (15)

where the first term represents the kinetic energy and V' (r) is the periodic
potential energy
Vir+R)=V(r), (1.6)

where R is any lattice vector.
The Bloch theorem states that the solutions of the Schrédinger equation
of Eq. (1.5) with periodic condition of Eq. (1.6) have the following properties

onls) = ()T
unk(r) = unk(r+ R) |
drup(r)unk(r) =1, (1.7)

cell

and F = [F,,(k) is the energy dispersion relationship. Here N = N:NyN,,
Ny is the number of unit cells in the crystal along the z-direction, n is the
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Table 1.1; Atomic structures.

IV semiconductors I1I-V semiconductors
Si 1s%s%2p®3s23p? Ga 15%25°2p%35%5p%3d104s24pT

Ge 1572572p%3523p°3d1%4s24p2  As  1522572p835%5p3d'%4524p3

energy band index and hk is the quasi-momentum of the crystal electron
which will be discussed later together with the derivation of Egs. (1.9).
Here we have imposed periodic boundary conditions on the wavefunction

() = U(r + Nya) - (1.8)

Applying an external force F, e.g., due to an external electromagnetic
field (E, B),

Rk=F = —¢ <E+%va) ,
vV = —1-6—E . (19)

h 0k
Here —e is the electron charge and v is the electron group velocity.

Before further examining the various properties of semiconductors it is
extremely useful to examine the atomic structure of some of the elements
which make up the various scmiconductor as listed in the following table,
Table 1.1.

A very important conclusion can be drawn about the elements making
up the semiconductors: The outmost valence electrons are made up of
electrons in either the s- or p-type orbitals. While this conclusion is strictly
true for elements in the atomic form, it turns out that even in the crystalline
semiconductors the electrons in the valence and conductor band retain this
s- or p-type character. The core electrons are usually not of interest as will
be later on, except of some special characterization-type experiments.

As the atoms of the elements making up the semiconductors are brought
together to form the crystal, the valence electronic states are perturbed by
the presence of neighboring atoms. While the original atomic functions
describing the valence electrons are, of course, no longer eigenstates of
the problem, they can be used as a good approximate set of basis states
to describe the “crystalline” electrons. This motivates the tight-binding
method.

For most semiconductor materials of interest, the atomic functions re-
quired to describe the outermost electrons are the s, p,, Py, and p, types.
Moreover, since there are two atoms per basis in a semiconductor, we then



6 ELEMENTAL AND COMPOUND SEMICONDUCTORS

require ten functions to describe the central cell part of the Bloch functions
in the form of

U(r) =D YD Cnj(K)mj(r — 15 — Ry)e™ B (1.10)
£ :

where the sum over R; runs over all unit cells, m 1s the index of the different
atomic functions ¥,,; used in the basis, and j denotes the atoms in each
unit cell.

Once the expansion set for the crystal states has been chosen, the coeffi-
cients Cyp,; remain to be determined. To this end, the Schrédinger equation
is in the form of a secular determinant

K'/’m’j"H"‘El\I/(k’r)),:O ) (1'11)

where H is the Hamiltonian of the system under investigation.

In theory, one can calculate the matrix elements in the secular deter-
minant, Eq. (1.11), by determining the crystal potential. This however is
very difficult because of the complexity of the problem. Slater and Koster
were the first to advocate the use of the tight-binding method as an em-
pirical technique. In their formalism, the matrix elements of the secular
determinant are treated as disposable constants. Energy levels in the band
structure can be obtained and fitted with the measurement data by adjust-
ing the disposable constants.

For semiconductors of device application interest, i.e., cubic semicon-
ductors with both diamond (silicon and germanium) and zincblende sym-
metries (III-V group), we shall discuss the conduction band and valence
band.

The conduction band consists of three sets of band minima located at
the I'1s-point at k = 0, the L-points at k = (r/a, 7/a, 7/a), and along the
A lines from (0,0,0) to (7/a,0,0), from (0,0,0) to (0,7/a,0), and from
(0,0,0) to (0,0,7/a), where a is the lattice constant. The valence band
tops are located at T'y5. Two bands are normally degenerate at this point,
Le., the HH and LH bands; the third one is the spin-split-off band due to
the spin-orbital interaction. Figure 1.3 shows the energy band structure of
carbon and silicon calculated by the sp3s* tight-binding model [1].
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Figure 1.3: Energy band structures of diamond-structure carbon and silicon
calculated by the sp®s* tight-binding model.

1.2.1 Conduction band

In the region around an energy minimum at kg in the conduction band, the
energy dispersion relationship F(k) can be expressed as

6E
= FEk — (ki — ko) — ko) (kj — ko )+...,
( 0)+Zz: 8k1 0 +Z 8](7 6k 0 )( J 0:.7)+
(1.12)
where ¢,j = z,y,z. The linear terms vanish because of the spatial in-

variance under translation of k — —k. In the region around k¢ where the
higher orders can be neglected, the energy dispersion E(k) is approximated
by a quadratic function of k:

E(k) = E(ko) +Zh2 (—) (ki = ko) (kj — ko)
(Ti*>,-j - Elf lefa(kj)]k:ko : (1.13)

Here (1/m*);; is the effective-mass tensor.
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1. Spherical band:

21, 1.\2
E(k) = F(ko) + (l;m*ko) (1.14)

2. Ellipsoidal band:
B = B(ko)+ & [Be ko™ (k= ko 0 g

*
2 m m}

where k; and k; are longitudinal and transverse components of wave
vector k, m; and m; are longitudinal and transverse effective masses.

1.2.2 Valence band

The valence band is much more complicated than the conduction band
because of the intermixing among the heavy hole, light hole and spin-split-
off bands. The k - p perturbation Hamiltonian in the form of
hk -p
m*

1s widely used to describe the valence band, where m* is the carrier effective
mass. We choose a basis of |2 1), [y 1), |2 1), |z 1), |y ), and |z ]}, where
z, y, and z denote the three orbitals associated with I‘15 representation of
the top of the valence band and 1 and | denote spin up and down. By
the usual perturbation theory, the wavefunction and the energy are power
series in k:

Yo = |a0) +Zk- Q1+Zk-k]-¢;%2+

+ Zkkk a2+ Zkkk kn it +

1]m z]mn
Eo = E"°+ZkiE§“+ZkikjEi Zkkk B +
ij ijm
+ Y kikjkmka ESE L (1.16)
ijmn

where |a) is one of the six basis orbitals. Superscript a0, al ... denote the
order of correction to the wavefunction and energy. E° is the valence band
edge and is usually set as the zero energy reference point. Est Efﬁn and
other odd-order corrections vanish due to the symmetry con31derat10n

In terms of the well-established 6 x 6 k- p approximation of Dresselhaus,

Kip and Kittle [2],
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Table 1.2: Valence band parameters of the k - p theory for silicon and

germanium.

Parameters Unit Si Ge
L eV-A? 9551 -143.32
M eV-A2 21517 -22.90
N eV-A? -38.10 -161.22
Q eV.At -125.0
A eV 60.044  0.282
a eV 2.1 2.0
b eV 1.5 2.9
d eV -3.4 -4.4
ag A 5.4309  5.6561
c11 10“dyn/cm2 16.56 12.853

C12 1011dyn/cm2 6.39 4.826

the valence-band Hamiltonian matrix for the unstrained crystal is in the

form
03x3
Hk-p = I:[( )
Lk2 + Mkzz Nkyky
H= Nkyk, Lkz + Mk2,
Nk k, Nk, k,

Nkgk,
Nkyk,

. (117)

Lk? + ME2,

where k',-zj = kI + lc?, O3x3 is the 3 x 3 zero matrix, L, M, N are band

parameters.

The spin-orbital interaction matrix is described by the following matrix

[3]

0 - 0
t 0 0
0 0 0
0 0 -1
0 0 —i
1 1 0

0

(1.18)

The values of parameters L, M, N and A for silicon and germanium

are listed in Table 1.2 [2] for low values of k (low hole energy)

Eq. (1.17) includes only terms in k;k;. For high hole energies (high
k values), terms of higher order in k; must be included. In the first or-

= @ is independent of |a) and

der approximation we assume that Eo4

rrrY
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Figure 1.4: The Fermi energy and carrier-concentration effective mass as
functions of the doping concentration for p-type silicon. Dashed lines are
results without quartic terms, while the solid lines are the results of the
modified k-p theory when Q@ = —125 eV-A*. Crosses mark the experimental
data. (After Fu and Willander, Phys. Lett. vol. A234, p.483-7, 1997.)

Ei"j‘}nn =0 1f ¢, , m and n are not the same so that
Lk2 4+ Mka + Qk2 Nkgky Nkk,
H= Nkyk, Lk} + ME2, + Qk; Nkyk,
Nk k, Nk ky Lk2 + Mkiy + Qk?

(1.19)
Here parameter Q) is to be determined by comparing calculated energy band
structure with experimental measurement results.

In Table 1.3 and Fig. 1.4 we present results of Fermi energy and carrier-
concentration effective mass (in the unit of free electron mass mg) as func-
tions of the doping concentration together with the measurement data from
Ref. [4]. Tt is observed here that the introduction of the quartic terms sig-
nificantly improves the description of the valence band structure at high
hole energy. (We shall define the concepts of carrier-concentration effective
mass and density-of-states (DOS) effective mass in the next sub-section.)
The top of the heavy hole band is set as the zero reference energy, the cal-
culation results are presented in such a way that the higher the hole energy,
the deeper the energy level lies inside the valence band.

The introduction of the quartic terms modifies very much the descrip-
tion of valence band structure in the high hole energy range, thus resulting
in the changes of the Fermi energy and the DOS effective mass as functions
of doping concentration and temperature shown in Fig. 1.5 and Fig. 1.6 to
compare the band structures calculated with and without quartic terms. It
1s observed here that the HH band is largely modified by the quartic terms.



