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TRANSLATOR'S PREFACE

In the interest of speed and economy the notation of the orig-
inal text has been retained so that the cross product of two vectors
A and B is denoted by [AB], the dot product by (AB), the Laplacian
operator by A, etc. It might also be worth pointing out that the
temperature is frequently expressed in energy units in the Soviet
literature so that the Boltzmann constant will be missing in various
familiar expressions. In matters of terminology, whenever pos-
gsible several forms are used when a term is first introduced, e.g.,
magnetoacoustic and magnetosonic waves, "probkotron" and mirror
machine, etc. It is hoped in this way to help the reader to relate .
the terms used here with those in existing translations and with
the conventional nomenclature. In general the system of literature
citation used in the bibliographies follows that of the American
Institute of Physics "Soviet Physics" series. Except for the cor-
rection of some obvious misprints the text is that of the original,

We wish to express our gratitude to Academician Leontovich
for kindly providing the latest corrections and additions to the
Russian text.
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NONLINEAR PLASMA THEORY
A. A. Galeev and R. S. Sagdeev

INTRODUCTION

In linear plasma theory an arbitrary perturbation can be ex-
pressec as a superposition of characteristic eigenmodes, each of
which is independent of the others. In the nonlinear theory the
eigenmodes interact with each other as a result of the nonlinearity.
This interaction is, in many respects, reminiscent of the interac-
tion between motions on different scales in hydrodynamic turbu-
lence. In a plasma, however, the pattern of this interaction can
frequently be represented in the familiar form of a superposition
of linear eigenmodes if account is taken of the fact that the non-
linearity only leads to a weak interaction between the modes. This
means that the coefficients in an expansion in characteristic eigen-
modes become slowly varying functions of time and ultimately
take on values which are very different from the values given by
the linear theory.

This approach is now generally called the theory of weak tur-
bulence. The equations of this theory can be derived from first
principles by means of an expansion of original equations for the
plasma in powers of a small parameter, the ratio of energy in the
oscillations to the total energy in the plasma. The energy source
for the perturbations in this theory are usually the various plasma
instabllities,

The theory of weak turbulence was developed at the beginning
of the 1960's; at the present time, by means of this theory it has
been possible to explain a number of important nonlinear effects:
the interaction of a beam of charged particles with a plasma; tur-
bulent heating of a plasma; the dissipation mechanism in collision-

1



2 A, A, GALEEV AND R, S, SAGDEEV

less shock waves; and anomalous resistivity. The methods of
weak turbulence go beyond the framework of plasma physics and
have been applied successfully in the analysis of nonlinear dis-
persive media in general, and, in particular, in the nonlinear dy-
namics of water waves. Thus, it has been possible to formulate
a quantitative theory of water ripples, effects which were only
amenable to a qualitative description for a long time.

The theory of weak turbulence has been the subject of a num-
ber of books and reviews in the last decade™ ; nevertheless, it is
felt that a need has arisen to summarize the results of the theory
of weak turbulence from a single point of view, including phenom-
enon that are not found in laboratory plasma physics.

It is useful to consider nonlinear plasma theory in terms of
three basic interactions: nonlinear wave —wave interactions,
wave —particle interactions, and finally, wave —particle ~wave
interactions (sometimes called the nonlinear wave —particle inter-
actions).

The first interaction, the wave — wave interaction is fre-
quently called resonance wave —wave scattering. The
resonance conditions can be written

?wi =0, Zk;=0,i=12,..,
i

where w; and k; are the frequencies and wave vectors of the waves
which participate in the interaction. The simplest interaction of
this kind is the one in which three waves are involved. The coupl-
ing between the waves is especially strong if the resonance condi-
tion is satisfled. Since this interaction does not involve resonance
particles, it can be described by means of the fluid equations (in
other words, it is not necessary to use the kinetic equations). The
wave—wave interaction lies at the basis of many effects in non-
linear wave dynamics: parametric wave instabilities (the case of
small amplitudes corresponds to the well-known decay instability);
the modulational instabflity of wave packets in a plasma and in
nonlinear optics; and self-focusing of waves in nonlinear optics,

If the quantities w and k are interpreted as the energy and momen-
tum of the photon associated with the w, k wave, it will be evident
that the resonance condition is simply a statement of the conser-

*B. B. Kadomtsev, Plasma Turbulence, Academic Press, New York, 1965.
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vation of energy and momentum in the elementary process in which
a single photon decays into two other photons or in the inverse
process. Consequently, it is not surprising that the wave interac-
tion conserves the total energy and momentum.

The second interaction can be pictured as being almost Iinear
(orquasilinear). Thewave — particle interaction is espe~
cially strong near resonance w =k - v (v is the velocity of the
particle that partictpates in the interaction). I this so-called
Landau resonance condition is satisfied, the particle maintains a
constant phase with respect to the wave and is effectively acceler-
ated (or retarded) by the electric field associated with the wave,
An analogous resonance arises in a magnetic field when the follow-
ing condition 18 satisfied:

o — loy = k.v, [ =0, 1, ...,

where w  is the particle gyrofrequency. Since this interaction
involves resonant particles it is necessary to make use of the
kinetic equations. From the quantum-mechanical point of view the
resonance condition for this interaction is a statement of the con-
servation of energy and momentum in the elementary process
involving the emission or absorption of a photon with energy hw
and momentum Ik by a particle moving with velocity v. Thus it

is not surprising that the wave —particle interaction conserves

the total energy and momentum of the waves and particles (rather
than the energy of the waves alone). The change in the wave am-
plitude associated with this interaction is called Landau damp-
ing (or inverse Landau damping) while the corresponding change
in the velocity distribution of the particles is called quasilinear
diffusion,

The third interaction, the wave—-particle-wave inter-
action, is frequently called nonlinear Landau damping.
The resonance condition for this interaction is written in the form
wy —wy = (kg — kp) - v, while the basic mechanism is reminiscent
of the linear wave—particle interaction. In the present case, how-
ever, the particle maintains a constant phase with respect to the
beat wave produced by two waves, This interaction also involves
resonant particles and must be considered within the framework
of kinetic theory. The resonance condition written above taken
with the plus sign corresponds to the elementary process involving
simultaneous emission or absorption of two photons by a particle.
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With the minus sign the resonance condition refers to the element-
ary process involving emission of a single photon and absorption
of another (in other words, the scattering process). In addition to
the conservation of the total energy and the total momentum of the
waves and particles in the scattering process it also turns out that
the total number of photons is conserved. In the classical case the
number of photons can be defined as the energy of the wave Wy,
divided by the frequency [that is to say, Wi /wk is the action of the
(w, k) wave].

It will be evident that in general all three interactions des—
cribed above can occur in a plasma at the same time; the behavior
of the plasma is then determined by the total effect of all three
interactions. The problem of anomalous resistivity in the plasma
is treated in a separate chapter as an example of this interaction.

Nonlinear phenomenon in a plasma cannot always be treated
by means of the theory of weak turbulence. Many plasma effects
are a result of strong turbulence, which is similar to the usual
hydrodynamic turbulence. At the present time no reliable quanti-
tative methods are available in the theory of strong turbulence.

As a rule, one tries to obtain reasonable estimates as to the orders
of magnitude involved. Certain examples of this kind are dis-
cussed in various sections of the present review.

The original step in the writing of this review was the presen-
tation of lectures by the authors at the International Center for
Theoretical Physics in Trieste in 1966. A report containing the
lectures [1] was edited by Book and O'Neil and published in 1969.

In the ensuing period so many new results have been obtained
in nonlinear plasma theory that it has become necessary to sub-
ject the original version to a thorough revision. In the process we
have also added a new chapter on anomalous resistivity in plas-
mas. It is assumed that the reader of the present review is
familiar with the linear theory of plasma waves and instabilities.*

*A. B. Mikhailovskil, Theory of Plasma Instabilities, Consultants Bureau, New York,
1974.
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Chapter 1
WAVE-WAVE INTERACTION

§1.1. Resonance Interaction

between Plasma Waves

Let us consider the nonlinear wave —wave interaction between
three plasma waves. An example of this kind of interaction is the
process in which a wave of finite amplitude decays into two
daughter waves, which was first treated by Oraevskii and Sagdeev
{1]. In order for this interaction to occur, the wave vectors and
frequencies must satisfy a resonance condition, that is to say,
ko =ky + ky and wy = wy + wy. It will be evident that the frequen-
cies and wave vectors of each of the waves are coupled by the
linear dispersion equation w = w(k). The nature of the dispersion
plays an important role in determining whether or not a resonance
interaction is possible for a given set of waves. In order to illus-
trate this point we note the difference between nonlinear reso-
nances which dominate the situation in ordinary gas dynamics and
those which are important in plasma physics. In the case of a
monochromatic acoustic wave of large amplitude, gas dynamic
theory predicts that the primary mechanism responsible for the
nonlinear distortion of the wave is the steepening of the wave front
(Fig. 1). This steepening can be understood in terms of the re-
sonance generation of higher harmeonics. If the original large-
amplitude wave is characterized by a frequency & and wave vector
k, the nonlinear interaction of the wave leads to the appearance of
a second harmonic (2w, 2k). Since the dispersion relation for the
acoustic wave is a linear relation w = kes, the harmonics, like the
fundamental mode, are characteristic modes of the system and are
thus at all times in resonance with the fundamental mode; thus,

\”\t'—‘m

Fig. 1. Steepening of the profile of an acoustic wave of finite
amplitude.
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the harmonics grow in time. Higher harmonics grow in similar
fashion and the appearance of higher and higher values of k, that is
to say, shorter wavelengths, is responsible for the steepening o.f
the front (Fig. 1). '

On the other hand, as arule plasma oscillations exhibit a strong
dispersion (i.e.,the frequency w is usually a nonlinear function of k)
sothatthe harmonics of the normal modes are themselves not normal
modes of the system. Consequently, harmonics of aplasmawave of
large amplitude are usually limited at a very low level and only lead to
aninsignificant distortion of the wave shape [2]. However, this re-
sult does not mean that plasma waves always propagate without
change of shape. Even if a plasma wave does not interact with its
own harmonics, it can still be in resonance with two other waves,

Resonance generation of harmonics can also be suppressed
by a choice of wave polarization such that the matrix element of
the interaction operator hetween the wave and its harmonics can
vanish identically. An example of this kind is furnished by trans-
verse Alfvén waves. Nonetheless, as we have seen earlier, this
does not mean that these waves propagate in a plasma without
change of shape,

Forpurposes of illustration we now consider a wave —wave inter-
action between an Alfvén wave of large amplitude, an Alfvén wave
of low amplitude, and an acoustic wave. The magnetic field, the
electric field, the velocity of the electron fluid, and its density are
written in the form

=

= H, + 8H, (2, ) +-hy (2, #);
=0E, (2, 0) + e, (2 0);

v=20V,_ (2, )+ vy (= O+ v b
N = Nyg+ N (2,0,

n

(1.1)

where H, is a fixed magnetic field in the z direction; the functions
6H. (z,?), 8E, (z,t) , and 8V (2, #) characterize the finite-amplitude
Alfvén wave; h,, e,, and v, are the perturbations of the fields and
fluid velocity of the low-amplitude Alfvén wave; N and v, are the
perturbations in the density and fluid velocity of the acoustic wave.
It is assumed that all three waves propagate along the fixed mag-
netic field H,.

We now solve the two-fluid MHD equations by perturbation
theory, taking the quantities H,, Ny, 6H,, 0E, and 6V, to be the
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unperturbed quantities; the quantitiesh , e ,v;, N, and v, are
small perturbations.

The Alfvén wave of finite amplitude can be represented as a
circularly polarized wave which is written in the form

8V, — i6V, = 8V exp (—i wof + ike2) + c.co 1.2)

The connection between the field amplitudes 6% and 6é&,
which are defined in similar fashion, and the flow velocity 6V is
given by the equations of motion of electron fluid and Maxwell's
equations

—i (wg + )bV = —(e/m)d€;
ESH = —(4neN/c)6V — (iw/c)68; (1.3)
kb8 = (iwo/c)0H,
Qnj = e;Hy/mic, One = on, Oy = Qu, me=m, my=M.

The solution of these equations leads to the linear dispersion
relation

kict=wle(o); e(0)=1—[ojo(0+aL)]; } 1.4)

el ol ot Of
0 =4ne} Ny/my; op=awp;, op=Q}.

The first-order perturbation equations are of the form
Ovy/0t + (c2/No)(ON/02) = —(0/02)(h -6H /4N M); (1.5)

ON/ot + N, (Ovy/oz) = 0; (1.6)

m (v, /0t) + efe, + (1/c)lvy X Hply = —muy (0/02)6V, —
—(elo)lvy X 8H_]; 1.7
curl hy — (1/c) (de  /0f) + (4nelc)Nov, = (—4ne/c) N6V ;  (1.8)

curl e + (1/c}(0h /0f) = 0. (1.9)

The left-hand sides of Egs. (1.5) and (1.6) describe the acoustic
wave while the right-hand sides of these equations represent the
coupling between the acoustic wave and the two Alfvén waves.
Similarly, the left-hand side of Egs. (1.7)-(1.9) describe the low-
amplitude Alfvén wave while the right-hand sides indicate the coupl-



