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PREFACE

This book has been conceived as a companion volume of The Mathe-
matics of Physics And Chemistry. Two decades have passed since the
publication of that book, and during this interval the demands for mathe-
matical knowledge laid by the physical sciences upon their students have
both shifted and increased. The early book has become incomplete in its
offerings for the student of today, and we have sought to remove this fault.

Unquestionably the best way to achieve that end would have been to
rewrite the book, to expand its size and its scope, along some lines which
are still unconventional but hold out promise for future interest. The
prospect of undertaking this frightened us. Also, we acknowledge that
there already exists a monumental treatise of this elaborate sort, dedicated
to the standard parts of the newer mathematics, in the work of Morse
and Feshbach, whose excellence would be hard to approach. We, there-
fore, decided upon the less ambitious course of editing a work which offers
what we regard as the most important components of today’s useful
mathematies in separate chapters written chiefly by experts.

We do not underestimate the difficulties inherent in this task. The
heterogeneity of highly composite books, in spite of the present vogue
which spawns them, always impairs their usefulness and certainly detracts
from their teachability. Nor is there a way of avoiding this difficulty.
One confronts here the principle of complementarity for editorial surveil-
lance. Written in the form of an uncertainty relation, that principle reads

AE-AT=H

where AE is the uncertainty in the esteem an editor enjoys among his
contributors, AT a measure of the lack of uniformity of treatment, style
and symbolism in different parts of the book, and H is a great deal larger
than Planck’s constant. (In general H is not a constant, but a function
of the contributors’ prestige, ranging from small values for modest writers
almost to infinity for prima donnas.) If the reader understands these facts
he will have the correct perspective on the present volume. .

The preparation of a collaborative work such as this requires more
human understanding, generous handling and skillful strategy on the part
of the publisher than any book of single authorship. We were most fortu-
nate in having a monitor who displayed an abundance of all these qualities
in Mr. W. Minrath, Vice President of the Van Nostrand Company, and
we want to thank him above all for his unfailing help and his good will.

HENRY MARGENAU
GEORGE M. MURPHY
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CHAPTER 1

TRANSPORT THEORY OF GASES

by
DAVID MINTZER

Department of Mechanical Engineering and Astronautical Sciences,
Technological Institute, Northwestern University, Evanston, Ilinois

1.1. Introduction.—Statistical physics deals with the relation
between the macroscopic laws that describe the internal state of a
system and the dynamics of the interactions of its microscopic con-
stituents. The derivation of the nonequilibrium macroscopic laws,
such as those of hydrodynamics, from the microscopic laws has not
been developed as generally as in the equilibrium case (the derivation of
thermodynamic relations by equilibrium statistical mechanics). The
microscopic analysis of nonequilibrium phenomena, however, has
achieved a considerable degree of success for the particular case of
dilute gases. In this case, the kinetic theory, or transport theory, allows
one to relate the transport of matter or of energy, for example (as in
diffusion, or heat flow, respectively), to the mechanics of the molecules
that make up the system.

In kinetic theory, the macroscopic quantities are found as averages
over the motion of many molecules; each molecular event is assumed to
take place over a microscopic time interval, so that a measurement that
is made over a macroscopic time interval involves many molecules.
The kinetic-description is, therefore, a probabilistic one in that assump-
tions are made about the motion of one molecule and the results of this
motion are averaged over all of the molecules of the gas, giving proper
weight to the probability that the various molecules of the gas can have
the assumed motion.

In its most elementary aspects, kinetic theory is developed on the
basis of a hard sphere model of the particles (atoms or molecules)
making up the gas.! The assumption is made that the particles are
uniformly distributed in space and that all have the same speed, but
that there are equal numbers of particles moving parallel to each
coordinate axis. This last assumption allows one to take averages over

1J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and
Liguids, pp. 8 ff., John Wiley and Sons, Inc., New York, 1954.
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1.2 TRANSPORT THEORY OF GASES 2

the direction of motion of the particles, and thus, to obtain a statistical
description of gross effects. This simple model is found to give results
that are reasonable approximations to the macroscopic laws they
attempt to describe. Aside from being unrealistic conceptually,
however, the very simplicity of the model prevents calculation of many
phenomena of interest.

In its more advanced aspects, kinetic theory is based upon a descrip-
tion of the gas in terms of the probability of a particle having certain
values of coordinates and velocity, at a given time. Particle interac-
tions are developed by the ordinary laws of mechanics, and the results
of these are averaged over the probability distribution. The probability
distribution function that is used for a given macroscopic physical
situation is determined by means of an equation, the Boltzmann
transport equation, which describes the space, velocity, and time changes
of the distribution function in terms of collisions between particles.
This equation is usually solved to give the distribution function in
terms of certain macroscopic functions; thus, the macroscopic conditions
imposed upon the gas are taken into account in the probability function
description of the microscopic situation.

1.2. Distribution Function.—Let us denote a point in space, having
rectangular coordinates (z,y,z), by r; the differential volume element
dxdydz will be represented by dr. Similarly, the velocity (or point in
velocity space) v will have rectangular components (v,,v,,v,); the volume
element in velocity space, dv,dv,dv,, will be represented by dv. If
dN is the number of particles which are in the differential volume dr, at
r, and have their velocities in the range dv, at v, then the distribution
function is defined by:

dN = f(r,v,t)drdv (1-1)

The differential lengths and velocities considered must be small com-
pared with the macroscopic distances and velocity intervals over which
there are significant changes in the gross properties of the gas. On the
other hand, they must be sufficiently large so that there are a large
number of particles contained in the differential space-velocity volume;
this allows f(r,v,t) to be a continuous function of its variables.?

If Eq. (1-1) is integrated over all of velocity space (— o0 < v,,2,,v,
< o0, in general), then the number of particles in the volume dr, atr,

2 The definition of the distribution function can best be made in terms of an ensemble
average (see H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemistry,
2nd Ed., p. 442, D. Van Nostrand Co., Inc., Princeton, N.J., 1956), and & connection
can be made with the Liouville theorem of statistical mechanies. Cf. H. Grad, ** Prin-
ciples of the Kinetic Theory of Gases,” Handbuch der Physik, Vol. XII, pp. 206 ff.,
Springer Verlag, Berlin, 1958.



3 TWO-PARTICLE COLLISIONS 1.3

is obtained; this gives the number of particles per unit volume, or the
number density, as:

n(r,t) = ff(r,v,t)dv (1-2)

For a gas consisting of only one constituent, of mass m, the mass
density is

p(r,t) = mn(r,t) (1-3)

1.3. Two-Particle Collisions.—One of the basic assumptionsin the
derivation of the Boltzmann equation is that the gas being described is
sufficiently dilute so that only two-particle collisions are of importance.
The mechanics of a two-body encounter will thus be described in order

-F(r)

Fi1a. 1-1. The Two-Particie Encounter.

to derive a relation for the angle of deflection of the particles from their
paths before the encounter, in terms of the relative velocity of the
particles and their impact parameter, which will be defined shortly.

It is assumed that the particles, which have no internal degrees of
freedom, interact through a central force field, that is, the interparticle
force depends only upon the distance between the particles, and acts
along the line connecting them. Since we are restricting the system to
collisions between only two particles at a time, the force is assumed to
have a finite range. To a good degree of approximation, this means
that the force decreases with distance sufficiently rapidly so that it has
negligible effect on the motion at distances of the order of the inter-
particle spacing (~n~1/3). If the particles, of mass m, and m,, are at
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the positions r; and r, with respect to some origin, the equations of
motion are (see Fig. 1-1):

mi; = — F(r)i,; mof, = F(r)i,
(1-4)
r=r,—r; r=|r|; i, = r/|r|

where F(r) is the magnitude of the force on particle two due to particle
one. Any external force acting on the particles is assumed not to vary
over the distances or times involved in the collision, so that the relative
motion of the particles is unaffected by the external force. The effect
of the external force will be assumed to be small, compared with the
interaction forces during a collision, and will be neglected here; thus,
the center of mass of the system moves with constant velocity. The
plane formed by the relative velocity of the particles and the line
joining their position will contain the relative position vector of the
particles for all time.® The relative motion of the particles may be
obtained from Eq. (1-4):
" 1 1 1
= ; —=— 4 — 1-5
W= POl o= et (1-5)

This describes the motion of a single particle having the reduced mass*
of the two-particle system, whose position is that of particle two with
respect to particle one, and which is acted upon by the interparticle
force.

Let the initial velocities of the particles be v, and v,, and their final
velocities be v and v;; the initial and final relative velocities will be

g=ve—-vy; g =v3-V; (1-6)

The velocity of the center of mass G is the same before and after the
collision:

G = m1v1 + mavz = G’

1-7
pry— (1-7)

If, as in Fig. 1-2, we describe the relative motion in the plane by means
of polar coordinates (r,0), conservation of energy requires:

(i + r20%) + V(r) = dug® = dug’;
g=18 ¢ =181 (1-8)

3 R. B. Lindsay, Concepts and Methods of Theoretical Physics, pp. 73—4, D. Van
Nostrand Co., Inc., Princeton, N.J., 1951.

+ H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemisiry, p. 413,
D. Van Nostrand Co., Inc., Princeton, N.J., 1956.



5 TWO-PARTICLE COLLISIONS 13

where V(r) is the potential associated with the interparticle force:
F(r) = —oV/or. Here, the total energy has been set equal to the
initial kinetic energy, and to the final kinetic energy, since, by the
assumption of a finite range of force, V is zero at the beginning and at
the end of a collision. We see, therefore, that the relative velocity
after collision is equal to the relative velocity before collision rotated
through the angle x of Fig. 1-2.

| |

F16. 1-2. Geometry of a Collision in a Central Force Field.

The impact parameter, b, is defined to be the perpendicular distance
between the initial relative path (along g) and the line parallel to g
through the force center (b would be the distance of closest approach of
the particles, if there were no interaction); the initial angular momentum
is just pubg. Conservation of angular momentur: ® is thus:

prid = pbg = pbg’ (1-9)
where ubg' is the final angular momentum [note that ¢’ = g from

® R. B. Lindsay, loc. cit.



14 TRANSPORT THEORY OF GASES 6

Eq. (1-8)]. The orbit is symmetric about a line through the force
center that bisects the angle between the initial and final relative paths
(the line r,, of Fig. 1-2).

The distance of closest approach, r,, is obtained by using the first of
Eq. (1-9) in the first of Eq. (1-8), and setting # = 0. Thus we find:

(1-10)

This determines the distance of closest approach in terms of the initial
relative velocity, the impact parameter, and the dynamical quantities
(masses and force law constants). The equation for the orbit of the
relative motion is found from the first of Egs. (1-8) and (1-9), using the
identity (#/6) = (dr/d6), as follows:

@)+ - )l - Zvel

The angle at which the minimum distance of approach occurs, 0,
(see Fig. 1-2), is thus:

oﬂ rll
6, = f 6 = — f (d6/dr)dr
[} ©
C b = Ta bdr
S ‘L 1 — %) — Clug) V()]
From Fig. 1-2, the angle of deflection, y, is given by:
x=m— 20, (1-12)

Thus, from Eqgs. (1-10), (1-11), and (1-12), the angle of deflection can
be found in terms of the parameters describing the collision (g, b, ¢, and
the force constants). For the two-body collision, therefore, the final
velocities of the particles, v; and vj, are functions of the initial velocities
v, and v,, and the above parameters.

1.4. Angle of Deflection for Some Simple Cases.—If, as is often
assumed for simplicity, the interparticle force law is given by

(1-11)

F(r) = K .3 (1-13)
rV

the equations may be written in a simple form. Defining:
B = bjr; Bo = b/rm; by = b(ug?/K)t/-D (1-14)
we have, from Eq. (1-10):

1 - B — —2g (Bofbor ™ = 0 (1-15)
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and, from Eqgs. (1-11) and (1-12)

1/2

8o -1/
xb=m—2[*[i-p - Zqemr| e g

One determines 8, from Eq. (1-15), and then uses it in the integral of
Eq. (1-16). For this inverse power law, the angle of deflection is thus
dependent upon all of the parameters of the collision only through the
single parameter by, and ».

|

Fic. 1-3. Geometry of a Collision for Hard Spheres.
The angle of deflection for the collision of rigid elastic spheres may be
obtained from Fig. 1-3. The minimum distance of approach is
tm = 012 = ${oy + 0y) (1-17)

where oy, o, are the diameters of the two colliding particles. From the
geometry, we see that

b = oy, 8in 0,
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so that the angle of deflection is given by:

= {17 — 28in~1 (bjoy,) b < o1g

0 ba o (1-18)

1.5. Some Vector Relations.—Since therelative motion takes place
in a plane, one further parameter must be given in order to describe the
collision in three dimensions, namely the orientation of the relative-
motion plane. This may be done as in Fig. 1-4, where the collision

Reference plane

e e — e - —

Fig. 1-4. Three-Dimensional Geometry of a Collision.

plane is shown, and a reference plane is drawn through the origin in
the collision plane (the origin being the location of the force center)
and perpendicular to the relative velocity vector 8. The angle ¢,
measured from an arbitrary line in the reference plane to the collision
plane, then defines the location of the latter. For a given value of
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relative velocity, the parameters b and & specify the collision; since the
angle of deflection may be found from the previous equations in terms
of the geometrical factor b, the angles y, ¢ may also be used to specify
the collision.

If the unit vector k is chosen along r,, but directed opposite to it,
k can be represented in terms of the angles = — 6, and = + e, or
}r + x) and 7 + ¢, where the angle 6, is
measured from the polar axis which is anti-
parallel to g, as in Fig. 1-3. Noting that y is
the angle between g and g’, and that g and k
form an angle 6, the vector triangle of Fig. 1-5
can be drawn; here, the magnitude a is a size
parameter, since k has been chosen of unit
length. From the relation between y and 4,, it
can be seen that the triangle is isosceles, so that

= 2¢ sin (x/2) = 2g cos 0, = 28 -k

Therefore
Fi1a. 1-5. Vector Tri-
g =8¢+ 28 kk (1-19) angle for a Collision.

From Eqgs. (1-6) and (1-7), we obtain:

v1=G—(—T2——)g; v2=G+(—ﬂ1———)g

m; + my my + My (1-20)
’ m2 ’ ’ ml ’
=G - |—=2 i va=G _—
i=G (m1 + mz) g 2 * (ml + mz) ¢

If we use Eq. (1-19) in the above relations, the changes in velocity of
each of the colliding particles are found to be:

/ =of{—T2_\ (s.
” (1-21)
’ = - ——1 .
vi = va = -2 () @Rk
From these relations between the initial and final velocities of each of
the particles, it follows that the jacobian of the transformation is unity,
so that

dvidvy = dv,dv, (1-22)
The velocity vectors of the particles are usually represented in

some stationary macroscopic coordinate system; it is this coordinate
system that is used to describe the position vector r of the distribution
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function. However, the integrations involved in the integrals of the
later sections are performed in terms of the relative velocity coordinate
system and the center of mass coordinate system. The transformations
of Egs. (1-20) and (1-21) are used, together with the total energy of the
system which can be found directly from Eq. (1-20):

dm, 0} + dmaol = §(m; + my)G? + Jpg? (1-23)
iz
gl
. g
l3=--g—
|
}
X |
=3 - ‘l
+ -
~ | iy
N
’\iz ~d

iy

F1a. 1-6. Gas Coordinate System and Relative
Velocity Coordinate System.

The transformations relating v, v,, and G, g are Egs. (1-20), and are
such that

dv,dv, = dGdg (1-24)

In the relative velocity system of Fig. 1-4, a rectangular coordinate
system is set up as follows: the i, axis is the line antiparallel to g,
through the origin; the i, axis is the line in the reference plane from
which ¢ is measured; the i, axis is in the reference plane, perpendicular
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to i, and i;, forming a right-handed system. The coordinates of g are
then

g = (0,0,—9) (1-—25)

the unit vector k, at angles (= + y} and = + £ has rectangular co-
ordinates:

k = (—cos (y/2) cos ¢, —cos (x/2) sin e, —sin (x/2))  (1-26)
the vector g’ is found from Eq. (1-19) to be:
g’ = (¢gsin y cos ¢, g sin y sin &, —¢g cos x) (1-27)
These representations will be used to calculate collision integrals in
Section 1.15.

Since the vector g’ is represented above in terms of the g-coordinate
system (i,,i,,i3) having —g as the iz axis, it is necessary to determine
the transformation to the (i,,i,,i,) coordinate system in which the
particle velocities are written, in order to evaluate certain integrals.

If we let (3,) be the spherical coordinate angles of the vector v, — v,
in the v-coordinate system, then:

8 = (vor — Ulr)iz + (UZy - vly)iy + (Vg — v1.)i
= g[sin & cos Yi, + sin & sin i, + cos di,] (1-28)

The unit vector iy extends along —g as already mentioned (see Fig.
1-6); the (i;,is,iz) coordinate axes may thus be written in terms of the
(iz,iy,i,) axes as follows:

iz = —[sin & cos i, + sin & sin i, + cos 9i,]
i} = —sin i, + cos i, (1-29)
iy = cos & cos i, + cos & sinyi, — sin &,

The i, axis has been chosen in the i,-i, plane; this choice is arbitrary and
gerves to define the axis from which the polar ““scattering” angle ¢ is
measured. Thus we have:

g = —gi; (1-30)
g’ = g[(sin & cos iy cos y + cos J cos ¢fsin ysin ¢ — sin ¢ sin y cos e)i,
+ (sin & sin  cos y + cos F sin ¢f sin y sin ¢ + cos Yrsin y cos &)i,
+ (cos & cos ¥ — sin & sin y sin £)i,] (1-31)

1.6. Inverse Collisions.—The particle velocities resulting from a
collision between particles of velocities v; and v,, having collision
parameters b and e, have been denoted as v; and v;; they may be
found from Egs. (1-21). Consider now the particle velocities resulting
from a collision between particles of velocities v; and vy, with collision
parameters b and ¢; fet these final velocities be denoted by vy and vj.
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The collision that takes (v,,v,) into (v},v;) will be called the direct
collision; that that takes (vi,v3) into (vi,v;) will be called the inverse
collision; see Fig. 1-7. Equations (1-9) and (1-10), the conservation
laws for energy and for angular momentum, applied to the new system,
yield g" = ¢’; since it was found that, for the original system, ¢’ = ¢,

sl N

K

S

:

F1a. 1-7. Direct and Inverse Collisions.

we see that the final relative speed for the inverse collision is the
same-as the initial relative speed for the direct collision:
g =g

Since the orbit depends only upon g, b and the dynamical quantities
(masses and force law), the angle of deflection in the inverse collision is
the same as that for the direct collision (cf. Eq. (1-11)); however, the
unit vector k’ for the inverse collision is the negative of that for the
direct collision. If, in Eq. (1-21), v,, v,, Vi, V3, 8, k are replaced,
respectively, by vi, vi, v, vz, 8/, —Kk, these equations become:

R , m ,

Vi — Vi = +2 (m——-—l 2m2) (g’ -k)k
. , m ,

vy — Vp = —2 (m_1 lmz) (8'-k)k

Noting, from Fig. 1-5, that g¢'-k = —(g-Kk), these equations reduce to
Eq. (1-21), with
Vi=vs Vi=v,



