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Preface

The field of combinatorial algorithms concerns the problems of performing
computations on discrete, finite mathematical structures. It is a new field, and only
in the past few years has it started to emerge as a systematic body of knowledge
instead of a collection of unrelated tricks. Its emergence as a new discipline is due
to three factors:

An increase in the practical importancé of computation of a combinatorial
nature, as compared to other computation.

Rapid progress, primarily of a mathematit:él nature, in the design and
analysis of algorithms. ’

A shift in emphasis from the consideration of particular combinatorial
algorithms to the examination of properties shared by a class of algorithms.

The combination of these factors has promoted combinatorial algorithms as an
important new discipline on the border between computer science and mathema-
tics. Courses in combinatorial algorithms and related courses in the analysis of
algorithms are now being taught in colleges and universities in computer science,
mathematics, electrical engineering, and operations research departments.

Combinatorial algorithms can be presented in different ways, and a course or
textbook can be directed toward different audiences. This book is aimed at a
reader who can best be characterized as having more of a computing background
than a mathematics background, a reader who is interested in combinatorial
algorithms because of their practical importance. Thus our main goals in writing
this book were:
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To choose the topics according to their relevance to practical computation
(however, we have included some not very practical but mathematically

interesting topics). ‘
‘To emphasize those aspects of algorithms that are important from the point of
view of their implementation without belaboring details that any competent -
programmer can supply.
To present mathematical arguments, where they are necessary, with emphasis
on insight.

Prerequisites. The prcrequxsltes required by this book vary somewhat from
chapter to chapter. The minimal knowledge of programming required is that
which can be obtained in a first course on computers in which students write
several rather extensive programs. This background should suffice to understand
the algorithms discussed, which are presented in a notation similar to current
high-level programming languages. The additional background obtained in a
second computer course on data structures and list processing is highly desirable.
The mathematical maturity required is that typical of a student who has taken
several mathematics courses beyond calculus.

Starred Sections. Two sections of this book have been marked by a . Section
3.4 is so marked because it requires some familiarity with advanced mathematical
concepts, and Section 8.6 is so marked because it is intrinsically complicated.
These sections can be considered optional. Exercises related to the starred
sections are also starred, as are other exercises that require advanced mathematics
or whose solution is unusually complex. '

_ Overall Organization. The dependencies among the nine chapters are indicated .
by the following diagram in which “‘strong™ dependéncies are shown by solid
arrows and “weak” dependencies by dashed arrows:

Introductory material

Intermediate material

Advanced material
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Chapter 1 is designed to display the scope of the material in the book. It also

introduces some topics and techniques that reappear in later chapters.

~ Chapters 2 and 3 discuss data structures and counting techniques, respec-
tively. With the exception of Section 3.4, all the material contained in these two
chapters is basic to the rest of the book. It may be more appropriate, however, to
cover the topics in these chapters as they are needed in presenting the material in
later chapters. The book is not written that way in an effort to make Chapters 4
through 9-as independent of each other as possible.

The material in‘Chapter 4 on exhaustive search is important in understanding -
Chapter 5, which is actually a specialization of techniques from Chapter 4 to
simple combinatorial objects. For the same reason, the material in Chapter 4 is
crucial to understanding many parts of Chapter 8 on graph algorithms, Chapter 9
continues the sequence of material in Chapters 4 and 8 by examining some
theoretical questions raised by the failure of computer scientists and mathemati-
cians to find “efficient” algorithms for some of the problems discussed.

Chapters 6 and 7 describe the most common of all combinatorial algorithms:
searching and sorting. These chapters rely most heavily on material in Chapters 2
and 3. ’
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chapter T

What is
Combinatorial

Computing?

The subject of combinatorial algorithms, frequently called combinatorial
computing, deals with the problem of how to carry out computations on discrete
mathematical structures. It is a new field: only in the past few years has a
systematic body of knowledge about the design, implementation, and analysis of
algorithms emerged from a collection of tricks and unrelated algorithms.

An analogy with a more established field may be useful. Combinatorial
computing bears to combinatorial (discrete, finite) mathematics the same rela-
tionship that numerical analysis bears to analysis. We are witnessing tcday in
combinatorial computing the same development that numerical analysis went
through in the 1950s—namely,

new algorithms are being invented at a rapid rate.

rapid progress, primarily of a mathematical nature, is being made in our
understanding of algorithms, their design, and their analysis.

empbhasis is shifting from consideration of a particular algorithm to properties
shared by a class of algorithms, and thus unifying patterns are emerging.

The increasing practical importance of computation of a ¢combinatorial
nature has undoubtedly contributed to the recent surge of activity in combinator-
ial computing. There is every reason to believe that the amount of computation of
a combinatorial nature that occurs in applications programs will increase faster
than the amount of numerical computation. This is because, outside the tradi-
tional areas of applications of mathematics to the physncal sciences, discrete
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mathematical structures occur more frequently than continuous ones, and the
fraction of all computing time spent on problems that arise in the physical
sciences is decreasing.- Hence computer users and applications programmers will
probably be called on to solve problems of a combinatorial rather than numerical
nature.

Unlike some other fields, combmatonal computing does not have a few
“fundamental theorems”’ that form the core of the subject matter and from which
most results can be derived. The entire subject may seem, at first, merely a
collection of unrelated, specialized techniques and tricks. Clever tricks do indeed
play a role, and in this chapter we will see some examples of “bit pushing”
techniques that convey this flavor. However, after examining many combinator-
ial algorithms, some general principles become apparent. It is these principles that
unify the field and make combinatorial computing a coherent subject that can be
presented in a systematic way. The purpose of this chapter is to illustrate some of
these important principles by means of examples, as well as to serve as an
introduction into some of the topics and techniques that will be treated in greater

.depth in later chapters.

The chapter is organized so as to go from the concrete aspects of computatxon
to more abstract principles, some of which require advanced mathematics for their .
application to the analysis of algorithms. Therefore the abstract sections of this
chapter are more difficult than the others, and in this respect Chapter 1 is a faithful
mirror of the field it introduces. Sections 1.1 and 1.2 show examples of the
detailed thinking required for efficient implementation of algorithms. Sections 1.3
and 1.4 present general principles of algorithm design. Finally, Sections 1.5 and
1.6 show how algorithms are analyzed. The design, analysis, and implementation
of algorithms form the core of combinatorial computing.

1.1 AN EXAMPLE: COUNTING THE
NUMBER OF ONES IN A BIT STRING

- Bit strmgs——that is, sequences of zeros and ones—are the basw carriers of
information in virtually all modern computers. Most programmers, however,
rarely handle information at the:detailed level of bit strings. This is certainly true
in numerical computatlon in which a programm;r usually expresses himself in
terms of arithmetic operations on numbers and is seldom concerned with the
internal representation of these numbers. On the other hand, in areas that are not
as well established as numerical computation, certain important operations on
data may not be built into computers or high-level programming languages. So, in
order to program efficiently, an applications programmer must be familiar with
algorithms that operate at the bit level; this is the case with a number of operations
that occur frequently in.combinatorial computing. Eventually, as these opera-
tions become better known, they are likely to be incorporated into computers and
programring languages; but until then they are necessary tools of the trade for
anyone who programs combinatorial algorithms.



Sec. 1.1 An Example. Counting the Nurnber of Ones in a Bit String

As an example, we consider the problem of counting the number of ones inan
n-bit string B = b,b,_, ... bob;. It is a natural operation if we imagine B to
represent a subset S of a set U of n elements, the ones indicating which elements
of U are in S. This operation, called the bit sum, then determines the number of .
elements in S. ' _

The first algorithm that comes to mind for computing the bit sum of B is to
inspect each bit in turn and, if it is a one, to increment a counter.

ce0 .
fori = 1tondoifd, = 1thenc « ¢ + 1

Algorithm 1.1 Computing the bit sum by looking at each bit.

On some computers, - Algorithm 1.1 may be the most reasonable one to
use. Most computers, however, have features that permit much faster bit sum
algorithms. Assume that the memory consists of cells that can hold an n-bit word
and that the computer has logical or boolean operations that operate in parallel on
each bit of a word, plus arithmetic operatnons that interpret these words as
unsigned nonnegative integers wntten in base 2.

c«0

cec+1 v
B«BAr(B-1)
Algorithm 1.2 A tricky way to compute the bit sum.

wma:om{

Consider Algorithm 1.2. The statement “B « B A (B — 1)” contains an
interesting operation that makes use of the assumptions stated above. a is the
logical “and” operation that operates in parallel on each pair of bits in corres-
ponding positions of its two arguments, B and B — 1. — is the arithmetic
operation of subtraction on mtegers represented in base 2. An example best -
shows that when thlS operation is executed, the rightmost 1 of B is replaced by 0.

B - 11001000
B-1 11000111

"B (B - 1) 11000000

The loop in Algonthm 1.2 is executed until B = 0, that is, until B contains only
zeros. Thus whereas the loop in Algorithm 1.1 is always executed n times, the
loop in Algorithm 1.2 is only executed as many times as there are ones in B. The
effect is as if Algorithm 1.2 were able to look only at the ones in B, without
knowing their positions a priori. This algorithm is obvnously efficient when
applied to “sparse” words—that is, to bit strings that contain few ones and many
zeros. It is “tricky” i in the sense that it depends intricately on the way that
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numbers are represented in the computer (in particular, negative numbers!),
something entirely foreign to the original problem of counting the number of ones
in a word.

The next algorithm is even more interesting. It shares with Algorithm 1.1 the
important property that the loop is executed a fixed number of times, dependent
on n but independent of the particular valie of B. But unlike Algorithm 1.1,
which repeats its loop n times, Algorithm 1.3, which we do not give explicitly, runs
through its loop only [lg n] times.! For a typical word size of n = 32 (or 64), the
loop 15 executed five (respectively six) times, which may result in a significant
speedup compared to Algorithm 1.1. The assumptions required for Algorithm
1.3 10 work on a given computer are about the same as those required for
Algorithm 1.2, and there must be a fast way of shifting words by 1, 2, 4, 8, . ..,
places.

Algorithm 1.3. is best explained by means of an example,

! by by be bs by by by by

Blll()l0.00I

I. First, extract the odd-indexed bits b; bs b3 b, and plaiée a zero to the
left of each bit to obtain B, 4.

, b, bs by b,

B g4 I o 1 o 1 o 0 o 1

Next, extract the even-indexed bits by bs b, b, shift them right by one
place into bit positions b, bs b; b, and place a zero to the left of each bit
to obtain B,en.

[ by be ba b,

B even o 1 0 0 0 0 0 0

(The newly inserted zeros are shown in small type to distinguish them
from the zeros that are extracted from B.)

Then, numerically add Bogq and Be,e,, considered as integers writ-
ten in base 2, to obtain B’.

by b7 bs bs by by b5 b

Bus |0 1 0 1 0 0 0 1
Bye | 0O 1 0 0 0 0 0 O

B |1 0 0 1 0 0 0 1

tThe symbol Ig x represents log, x. [x] is the ceiling of x: the least integer k, k 2 x. Similarly |x |
is the floor of x: the greatest integer k, k < x.
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2. Extract the alternate pairs of bits bs b5 and b5 b} and place a pair of
zeros to the left of each pair to obtain Boga.

l - be b5 b2 b

B",ddI000100'01

Next, extract the other pairs b; b} and b, b}, shift them right by two
places into bit positions bs bsand b3 b}, respectively, and insert a pair of
. zeros to the left of each pair to obtain B,

bs b3 by b3

Bien| o 0 1 0 o o 0 0
Numerically add B4 and B..,., to obtain B".
bg b3 bs b5 by b3 b3 by

B |0 0 1 1 0 0 0 1
3. Extractbits b3 b3 b3 b} and place four zeros to the left to obtain Bag.
by b3 b5 by

Blas | o o o o 0 0 0 1

Also, extract bits bg- b5 bfb’g, shift them right four places into bit
positions b b3 b3 b}, and place four zeros to the left to obtain B, cn.

| bi b5 b; b3

B&en | 0 o o 0 0 0 1 1
Finally, numerically add B5sq and BY.., to obtain B” = (00000100).

B™ is the representation in base 2 of the bit sum of B (4 in this example).

The generalization of this algorithm to arbitrary n iseasy if we imagine that B
is padded with zeros to the left until its length is equal to the first power of 2 greater
than or equal to n. o .

The reader is encouraged to prove that the algorithm (in its general form) is
correct. In Section 1.4 we describe 4 general principle of algorithm design from
which the algorithm and a correctness proof follow directly. This principle is a
good illustration of our claim that combinatorial computing does have general
concepts and techniques from which many special cases follow.

Are there still faster algorithms for computing the bit sum of aword? Is there
an “optimal” algorithm? The question of optimality of algorithms is an important

_one, but it can be treated only in special cases. To show that an algorithm is
optimal, one must specify precisely the class of algorithms allowed and the
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criterion of optimality. In the case of bit sum algorithms, such specifications
would be complicated and largely arbitrary, involving specific details of how
computers work. We will discuss optimality of algorithms in Section 1.5, in more
simplificd settings.

We can however, make a plausible argument that the following bit sum
algorithm (Algorithm 1.4) is the fastest possible, since it uses a table lookup to
obtain the result in essentially one operation. The penalty for this speed is an
extravagant use of memory space (2" locations), thereby making the algorithm
tmpractical except for small values of n. The choice of an algorithm almost always
involves tradeoffs among various desirable properties, and generaily the better an
algorithm is from one aspect, the worse it is from another.

Algorithm I.4 is based on the idea that we can precompute the solutions to ail
possible questions, store the results, and then simply look them up when
needed. As an example, for n = 3, we would store the information -

Word Bit Sum

000
001
010
011
100
101
110
111

W N e N o e

What is the fastest way of looking up a word B'in this table? Under assumptions
similar, to those used in the preceding algorithms, we may assume that B can be
interpreted as an address of a memory cell that contains the bit sum of B, thus
giving us an algorithm that requires only one memory reference.

In concluding this example, we notice the great variety of algorithms that
exist for computing the bit sum, each one based on entirely different
principles. Algorithms 1.1 and 1.4 solve the problem by “brute force”:
Algorithm 1.1 looks at each bit and so requires much time; Algorithm 1.4 stores
the solution for each separate case and thus requires much space. Algorithm 1.3
is an elegant compromise.

1.2 A REPRESENTATION PROBLEM:
DIFFERENCE-PRESERVING CODES

A recurring problem of great importance in combinatorial computirg is to
find efficient representations of the objects to be manipulated. These objects can
be as simple as the bit strings of the preceding example or as complicated as



