| Advanced
| Theory of =
4 Semlconduc'ror
Dewces w

L Kar Hess




ADVANCED THEORY
OF SEMICONDUCTOR
DEVICES

7/

PAS

KARL HESS

University of lllinois

PRENTICE HALL
Englewood Cliffs, New Jersey 07632



To the memory of my father



—7L

[f

PREFACE

Since the invention of the bipolar transistor by Bardeen and Brattain in late
1947, semiconductor devices have developed at an astonishing pace. A large
variety of single device components for numerous uses evolved over the first
two decades of the ‘“‘golden semiconductor age,” while in the third decade
(starting about 1970) integrated circuits revolutionized semiconductor elec-
tronics. Semiconductor memories have replaced other components and have
brought us not only the video game but also the supercomputer. Current
devices approach submicrometer dimensions corresponding to 10° elements
on a chip of centimeter size. At the same time, two newer technologies of
crystal growth have evolved from the vapor phase epitaxy introduced in 1960,
molecular beam epitaxy (MBE) and metal organic chemical vapor deposition
(MOCVD), which make it possible to grow lattice-matched semiconductor
structures having a characteristic dimension of 107® cm (and less). These
heterostructures (superlattices) have already shown interesting effects with
high device potential caused by quantum effects.

Astonishingly enough, the theory of semiconductor devices as a branch
of solid state theory has received relatively little attention. Any theory of
devices must contain a careful account of (1) electron (hole) drift and dif-
fusion, including the effect of high electric fields and high energies; (2) gener-
ation recombination (which is usually treated very cursorily in solid state
texts); and (3) the self-consistent fields of variable densities of electrons, holes
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xiv Preface
as well as donors and acceptors. For a proper treatment of (1)-(3) some basic
knowledge of energy bands, electron impurity (lattice vibration) interaction,
and basic quantum theory (tunneling, size quantization) is necessary. This
background per se can be found in many solid state texts; unfortunately,
however, little effort has been made to link it to electronic devices. Although
much of the material and especially the depth of treatment of these texts are
directly influenced by device applications, this fact is hardly ever mentioned.
Often the device application is considered as something “dirty,” and any
remarks about it are more or less shamefully avoided. The physics student
therefore usually does not understand why Gunn devices and field effect
transistors are not made out of InSb or PbTe (which have higher minima and
high electronic mobilities) but out of GaAs instead. I have also not found a
single text on solid state that explains well why silicon is so special. On the
other hand, there exist enormous amounts of information on devices with
little link to the basics. In these texts, equations that describe the device
operation are typically “‘introduced without much justification’ and then are
integrated to arrive at the final result. Nobody really knows just why this or
that equation has been used and what has to be modified when the device
operation is slightly changed or when the dimensions are shrunk, for example.
Even in excellent texts on devices, principles are consistently used that are
obsolete and have nothing to do with reality. For example, the electrical
conductivity is always assumed to be proportional to T*? (T is the absolute
temperature) when ionized impurity scattering is dominant. In fact, in metal-
oxide-silicon transistors this is never true and 7° law is much better over most
of the temperature range. This is only one of many examples.

To understand devices, and especially very small (submicrometer) de-
vices, we need to establish our approach on more basic principles. We need to
know about the effective mass theorem, Fermi’s Golden Rule, the scattering
probabilities, velocity overshoot, and the generation-recombination mech-
anism, to give a few examples. A book that treats all the necessary principles,
including new developments and the resulting devices, would be much too
long and probably unnecessary. Streetman’s Solid State Electronic Devices
provides a working knowledge of most of the important devices. It is the
purpose of the present book to outline the basic unifying principles that are
necessary to understand these devices in greater detail and to enable gener-
alizations for future development. Consequently, I will discuss only certain
ideal models of devices and refer to sources such as Streetman for more details
on specific devices. However, much detail will be given with respect to the
basic principles. Therefore, this book addresses graduate students and re-
searchers in fields connected with semiconductor devices who wish to derive
and understand the basic equations for a novel or current device, equations
that are general enough to contain all the necessary basic physical effects and
specific enough to make an effective solution possible. It is this quality that
distinguishes a device theory from mere device modeling or from a general
theory of the solid state.
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In addition, I desire to show that semiconductor device theory can be a
discipline by itself that contains the necessary richness and complications to
attract scientific interest and provides the possibility of new developments in
future decades. This richness is caused, in my opinion, by the existence and
importance of generation-recombination, statistical effects (Boltzmann equa-
tion), and the possibility to control the boundary conditions on a quantum
level (submicron devices, quantum well superlattice structures). These compli-
cated effects have not only become important for small devices but can in turn
be included in modern device theory and simulation, because of the enormous
progress of computers. Large-scale computation will be a major tool to under-
stand small devices, and this book is also intended to give the physical basis for
large-scale computational models.

As a text for graduate courses, this book can be used in various ways. I
have used it for a one-semester course for first- and second-year graduate
students of physics and electrical engineering. Not all of the material can be
taught in one semester. Depending on student interest, one can emphasize the
solid state aspects and leave out much of the last chapters on devices, or one
can emphasize the device aspects and skip much of Chaps. 3 and 9 and all of
Chaps. 2 and 7. I have also used the contents of this book for a two-semester
course and have supplemented the text in the second semester by a description
of numerical methods in device simulations (MINIMOS, PISCES) and on
another occasion by developing in class a band structure and Monte Carlo
simulation. The required background for the book is an introduction to the
principles of quantum mechanics and, even more so, a working knowledge of
advanced calculus. The material is presented in a dense form, and, in order to
really understand it, one needs to “go over it with a pencil” and in some
instances consult the referenced literature.

My thinking and approach in writing this book have been much influ-
enced by my colleagues B. G. Streetman and N. Holonyak, Jr., and by the
inspiring environment at the University of Illinois.

Thanks go to E. Kesler, C. Willms, and to my wife Sylvia for their help in
preparing the manuscript.

Karl Hess
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BRIEF REVIEW

OF THE RELEVANT
BASIC EQUATIONS
OF PHYSICS

[t is clear that from a mathematical viewpoint all equations of physics (micro-
scopic and macroscopic) are relevant for semiconductor devices. In an abso-
lutely strict theoretical way, we therefore would have to proceed from the
fundamentals of quantum field theory and write down the ~102 coupled
equations for all the atoms in the semiconductor device. Then we would have
to solve these equations, including the complicated geometrical boundary
conditions. However, the outcome of such an attempt is clear to everyone who
has tried to solve only one of the 10> equations.

Any realistic approach has to proceed differently. Based on the experi-
ence and investigations of many excellent scientists in this field, we neglect
effects that would influence the results only slightly. In this way many relativ-
istic effects become irrelevant. In my experience the spin of electrons plays a
minor role in the theory of semiconductor devices and can be accounted for in
a simple way (the correct inclusion of a factor of 2 in some equations).

Most effects of statistics can be understood classically, and we will
need only a very limited amount of quantum statistical mechanics. This leaves
us essentially with the Hamiltonian equations (classical mechanics), the
Schrodinger equation (quantum effects), the Boltzmann equation (statistics),
and the Maxwell equations (electromagnetics).

It is clear that the atoms that constitute a solid are coupled, and there-
fore the equations for the movement of atoms and electrons in a solid are
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coupled. This still presents a major problem. We will see, however, that there
are powerful methods to decouple the equations and therefore make explicit
solutions possible. My presentation attempts a delicate balance between rigor
and intuitive concepts. In this way, the fundamental laws of physics are finally
reduced to laws of semiconductor devices that are tractable and whose limita-
tions are clearly stated.

Many body effects such as superconductivity are excluded from our
treatment. Because of the low density of mobile particles in semiconductors,
many body effects are rare, except for effects connected to screening, which
will be treated in detail in Chap. 7. Effects of high magnetic fields are also
excluded since they are unimportant for most device applications.

1.1 THE EQUATIONS OF CLASSICAL MECHANICS

Some time after the work of Galileo, Kepler, Copernicus, and Newton,
Hamilton was able to give the laws of mechanics a very elegant and powerful
form. He found that the laws of mechanics can be closely linked to the sum of
kinetic and potential energy written as a function of momentumlike (pi) and
spacelike (x;) coordinates. This function is now called the Hamiltonian func-
tion H(p,,x;). The laws of mechanics are

dp; dH (p;,x;)

i Tox (1.1)

and
dx,‘ 8H( i xl‘)
e (1.2)
Di
where ¢ is time and i = 1,2,3. Instead of Xi, we sometimes denote the space
coordinates by x,y,z.

Some simple special cases can be solved immediately. The free particle
(potential energy = constant) moves according to

H=2p2m
and we have from Eq. (1.1)
Pi_ . _
7 =0 Pi = constant

which is Newton’s first law of steady motion without forces.
If we have a potential energy V(x;) that varies in the x, direction, we
obtain from Eq. (1.1)
% _ GV(xl)
dt axl

=F (1.3)
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The quantity defined as Fis the force, and Eq. (1.3) is Newton’s second law of
mechanics.

These examples are enough for our purpose, since we will make less use
of classical mechanics than we do of quantum mechanics, which is discussed in
the next section.

1.2 THE EQUATIONS OF QUANTUM MECHANICS

At the beginning of the twentieth century, A. Einstein, M. Planck, L. de
Broglie, E. Schrodinger, W. Heisenberg, and M. Born (to name a few) real-
ized that nature cannot be strictly divided into waves and particles. They found
that light has definite particlelike properties and cannot always be viewed as a
wave, and particles such as electrons revealed definite wavelike behavior
under certain circumstances. They are, for example, diffracted by gratings as
if they had a wavelength

N=h/lpl (1.4)

where fi=h/2m=6.58 107'* Vs and p is the electron momentum.

Schrédinger showed that the mechanics of atoms can be understood as
boundary value problems. In his theory, electrons are represented by a wave
function (r), which can have real and imaginary parts, and follows an eigen-
value differential equation:

R _
(=00 V24 V) ) = Ee) (1.5)
The part of the left-side of Eq. (1.5) that operates on { is now called the
Hamiltonian operator H.

Formally this operator is obtained from the classical Hamiltonian by
replacing momentum with tie operator /i V(i = imaginary unit), where

_ (ﬁ_ 9 i)
ax ay oz /)

The meaning of the wave function (r) was not clearly understood at
the time of Schrodinger; in fact, y(r) was misinterpreted by Schrodinger
himself. It is now agreed that [y(r)|* is the probability of finding an electron in
a volume element dr at r. In other words, we have to think of the electron as a
point charge with a statistical interpretation of its whereabouts (the wavelike
nature!) It is usually difficult to get a deeper understanding of this viewpoint
of nature; even Einstein had trouble with it. It is, however, a very successful
viewpoint that describes exactly all phenomena we are interested in. To obtain
a better feeling for the significance of ¥(r), we will solve Eq. (1.5) for several
special cases. As in the classical case, the simplest solution is obtained for

constant potential. Choosing an appropriate energy scale, we put V(r) =0
everywhere.
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By inspection we can see that the function
Cexp(ik-r)=C(cosk-r + isink-r) (1.6)
is a solution of Eq. (1.5) with
B k*2m =E (1.7)

and C a constant.

The significance of the vector k can be understood from analogies to
well-known wave phenomena in optics and from the classical equations. Since
E'is the kinetic energy, fk has to be equal to the classical momentum p to
satisfy £ = p?/2m. On the other hand, in optics

k| = 2m/\ (1.8)
which gives, together with Eq. (1.4),
fk=p

which is consistent with the mechanical result.
How can the result of Eq. (1.6) be understood in terms of the statistical
interpretation of y(r)? Apparently

[W(r)[* = |C](cos® k-r+sin? k-r) = ICP

This means that the probability of finding the electron at any place is equal to
C*. If we know that the electron has to be in a certain volume V,, (e.g., of a
crystal), then the probability of finding the electron in the crystal must be one.
Therefore

[ Icpdr=vjcp=1

and
ICl=1VV, (1.9)

In other words, the probability of finding an electron with momentum %k at a
certain point r is the same in the whole volume and equals 1/V,.

This is a peculiar result that can only be understood if one is either very
familiar with optics (coherence conditions in interference problems) or if one
understands in detail the uncertainty principle. The unfamiliar reader is re-
ferred to the literature given at the end of this section (Feynman).

By confining the electron to a volume, we have already contradicted our
assumption of constant potential V (r) = 0. (Electrons can only be confined in
potential wells.) If, however, the volume is large, our mistake is insignificant
for many purposes.

Let us now consider the confinement of an electron in a one-dimensional
potential well (although such a thing does not exist in nature). We assume that
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the potential energy V(r) is zero over the distance (0, L) on the x axis and
infinite at the boundaries 0 and L. ' ' .

The Schrodinger equation, Eq. (1.5), reads in one dimension (x direc-
tion, V(x) =0)

fi2 0% (%)
L =FE 1.10
TP = B (1.10)
Inspection shows that the function
¢(x)=\/%sinn%x withn =123, .. (1.11)

satisfies Eq. (1.10) as well as the boundary conditions. The boundary condi-
tions are, of course, that { vanishes outside the walls, since we assumed an
infinite impenetrable potential barrier. In the case of a finite potential well,
the wave function penetrates into the boundary and the solution is more
complicated. If the barrier has a finite width, the electron can even leak out of
the well (tunnel). This is a very important quantum phenomenon the reader
should be familiar with. We will return to the tunneling effect below.
The wave function, Eq. (1.11), corresponds to energies E

B n 2’Tl'zfl2
2mlL?

Since n is an integer, the electron can assume only certain discrete energies
while other energies are not allowed. These discrete energies that can be
assumed are called quantum states and are characterized by the guantum
number n. The wave function and corresponding energy are therefore also
denoted by s, , E,,.

Think of a violin string vibrating in various modes at higher and lower
tones (frequency v), depending on the length L, and consider Einstein’s law:

E =hv (1.13)

If we compare the modes of vibration of the string with the form of the wave
function for various n, then we can appreciate the title of Schrédinger’s paper,
“Quantization as a Boundary Value Problem.”

From the above examples it is clear that the solution of the Schrodinger
equation requires considerable effort and we would be in trouble if we had to
find an exact solution for all kinds of potentials V (r) that are of interest in the
theory of semiconductor devices. Fortunately there is a powerful method of
approximation, perturbation theory, that gives us the solution for arbitrary

weak potentials. The method is very general and applies to any kind of
equatiorn.

Consider an equation of the form

(Ho+eH)y=0 (1.14)

(1.12)
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where H, and H, are differential operators of arbitrary complication and € is a
small positive number.
If we know the solution ys, of the equation

Holbpy =0

then we can assume that the solution of Eq. (1.14) has the form U, + €.
Inserting this form into Eq. (1.14), we obtain

(Ho + eHy)(Yo + €y) = Holig + eH by + Hyels, + €H

We now can neglect the term proportional to € (because € is small), and since
H()ll,l() = 0, we have

Hllj}()‘}'H()llJ]:O (115)

This equation is now considerably simpler than Eq. (1.14) since Wy is known.
Therefore, s, can be determined easily if H, has a simple form no matter how
complicated £, is. The form of the Schrédinger equation allows further simpli-
fication, and it is easy to show that any problem involving a small given
perturbation H, reduces to solving a three-dimensional integral.

Assume that we know the solutions of a Schrédinger equation:

H()lbn:En‘bn n :1’2739~-- (116)
and we would like to know the solutions of
(Ho+ H)d,, =W, b, with H; << H, (1.17)
Then it is shown in elementary texts on quantum mechanics (Baym) that
_ M|
Wm_Em+Mmm+n§mm': (1.18)
with
M,
b = Yy +n§mm¢n (1.19)
and
M., =j Ui H b, dr (1.20)
Vol

where dr stands for dxdydz (integration over the volume Vo) and i is the
complex conjugate of s, .

We have, therefore, reduced the solution of the Schrédinger equation of
the new problem to the integration of Eq. (1.20). In addition, one needs to
know the solution of Eq. (1.16). Depending on the nature of the problem, this
could be the solution for the free electron, the one-dimensional well, the
hydrogen atom, the harmonic oscillator, or other well-known solutions.

The formalism outlined above and the examples given are independent



