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PREFACE

It has been our purpose to prepare a textbook for an initial course in
thermodynamics for engineers of any discipline. Such a course must stress
the fundamental principles of thermodynamics and, at the same time, be of
sufficient breadth to prepare students for a variety of subsequent courses
in which the principles are applied to different kinds of systems. Thus, while
paying ample attention to simple fluid systems, we have also included care-
ful treatments of solid systems under stress, surfaces, cells, and electric and
magnetic systems,

We have been guided in our presentation of the fundamental principles
of thermodynamics by Zemansky’s “Heat and Thermodynamics,” a widely
used introductory text of some forty years standing for students of science.
The present work is in some measure an engineering adaptation of that
work. Since this work is designed for use in engineering curricula, emphasis
is placed on a variety of applications of technological significance.

The main body of the text is devoted to the principles and applica-
tions of classical thermodynamics, an area of study which in no way de-
pends on the atomistic nature of matter. The final chapter presents ap ele-
mentary discussion of statistical thermodynamics, which owes its existence
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to atomic and quantum theory. Its purpose is to provide an introduction to
a branch of knowledge in which may be found a deeper insight into the
nature of the laws of thermodynamics.

Although many individuals have contributed in one way or another,
by question or comment, to the quality of this second edition of ‘“Basic
Engineering Thermodynamics,” no one has approached the helpfulness of
Howard E. Cyphers, Associate Professor of Mechanical Engineering at
Rensselaer Polytechnic Institute, who studied the manuseript with an
eagle eye and directed our attention to numerous errors and infelicities.

MARK W. ZEMANSKY
MICHAEL M. ABBOTT
HENDRICK C. VAN NESS
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TEMPERATURE

1-1 Macroscopic Point of View

The application of scientific principles to the solution of any real problem
must necessarily start with a separation of a restricted region of space or a
finite portion of matter from its surroundings. The portion which is set
aside (in the imagination) and on which attention is focused is called the
system, and everything outside the system which has a direct bearing on its
behavior is known as the surroundings. When a system has been chosen, the
next step is to describe it in terms of quantities related to the behavior of
the system or its interactions with the surroundings, or both. There are in
general two points of view that may be adopted, the macroscopic and
the microscopic.

Let us take as a system the contents of a cylinder of an automobile engine.
A chemical analysis would show a mixture of hydrocarbons and air before
explosion, and after the mixture had been ignited there would be com-
bustion products describable in terms of certain chemical compounds. A
statement of the relative amounts of these substances is a description of the
composiiion of the system. At any moment, the system whose composition
has just been described occupies a certain volume, depending on the position
of the piston. The volume can be easily measured and, in the laboratory, is
recorded automatically by means of an appliance coupled to the piston.
Another quantity that is indispensable in the description of our system is
the pressure of the gases in the cylinder. After explosion this pressure is
large; after exhaust it is small. In the laboratory, a pressure gauge may be
used to measure the changes of pressure and to make an automatic record
as the engine operates. Finally, there is one more quantity without which
we should have no adequate idea of the operation of the engine: the tem-
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perature. As we shall see, in many instances, it can be measured just as
simply as the other quantities.

We have described the materials in a cylinder of an automobile engine by
specifying four quantities: composition, volume, pressure, and temperature.
These quantities refer to the gross characteristics, or large-scale properties,
of the system and provide a macroscopic description. They are therefore
called macroscopic coordinates. The quantities that must be specified to
provide a macroscopic description of other systems are, of course, different;
but macroscopic coordinates in general have the following charactenstxcs
in common:

They involve no special assumptlons concerning the structure of matter.
They are few in number.

They are suggested more or less directly by our sense perceptions.

They can in general be directly measured.

[ U I

. In short, a macroscopic description of a system involves the specification
of a few fundamenial measurable properties of a system. Although the
macroscopic point of view is the one adopted in thermodynamics, it should
- be understood that the microscopic point of view is of great value and that
it may lead to a deeper insight into the principles of thermodynamics. This
point of view is taken in the branch of science called statistical mechanics,
" a subject considered briefly in the final chapter. We indicate here merely
the distinction between the two points of view by giving a simple micro-
scopic description of a gas in a containing vessel.

1-2 Microscopic Point of View

We assume that the gas consists of an enormous number N of particles
called molecules, all having the same mass and each moving with a velocity
independent of the others. The position of any molecule is specified by the
three cartesian coordinstes z, y, and z, and the velocity by the three com-
ponents v,, v,, and v,. Therefore, to describe the position and velocity of a
molecule, we need six numbers. A microscopic description of the state of the
gas consists of the specification of these six numbers for each of the N
molecules.

We need not pursue the matter further to understand that & microscopic
_ description involves the following characteristics:

1 Assumptions are made concerning the structure of matter; e.g., the
existence of molecules is assumed.
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2 Many quantities must be specified.
3 The quantities specified are not suggested by our sense perceptions.
4 These quantities cannot be measured.

1-3 Macroscopic versus Microscopic

Although it might seem that the two points of view are hopelessly different
and incompatible, there is, nevertheless, a relation between them, and when
both points of view are applied to the same system, they must lead to the
same conclusions. The relation between the two points of view lies in the
fact that the few directly measurable properties whose specification con-
stitutes the macroscopic description are really averages over a period of
time of a large number of microscopic characteristics. For example, the
macroscopic quantity pressure is the average rate of change of momentum
due to all the molecular collisions made on & unit of area. Pressure, however,
is a property that is perceived by our senses. We feel the effects of pressure.
Pressure was experienced, measured, and used long before scientists and
engineers had reason to believe in the existence of molecular impacts. If
molecular theory is changed or even discarded at some time in the future,
the concept and meaning of pressure will likely remain. Herein lies an
important distinction between the macroscopic and microscopic points of
view. The few measurable macroscopic properties are as sure as our senses.
They will remain unchanged as long as our senses remain the same. The
microscopic point of view, however, goes much further than our senses.
It postulates the existence of molecules, their motion, collisions, ete. It is
constantly being changed, and we can never be sure that the assumptions
are justified until we have compared some deduction made on the basis of
these assumptions with a similar deduction based on observed macroscopic
behavior.

1-4 Scope of Thermodynamics

It has been emphasized that a description of the gross characteristics of a
system by means of a few of its measurable properties, suggested more or
less directly by our sense perceptions, constitutes a macroscopic description.
Such descriptions are the starting point of all investigations in all branches
of science and engineering. For example, in dealing with the mechanics of
a rigid body, we adopt the macroscopic point of view in that only the
" external aspects of the rigid body are considered. The position of its center
of mass is specified with reference to coordinate axes at a particular time.



