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Preface

This book was written expressly to serve as a textbook for a one- or
two-semester introductory graduate course in functional analysis. Its (soon
to be published) companion volume, Operators on Hilbert Space, is in-
tended to be used as a textbook for a subsequent course in operator theory.
In writing these books we have naturally been concerned with the level of
preparation of the potential reader, and, roughly speaking, we suppose him
to be familiar with the approximate equivalent of a one-semester course in
each of the following areas: linear algebra, general topology, complex
analysis, and measure theory. Experience has taught us, however, that such
a sequence of courses inevitably fails to treat certain. topics that are
important in the study of functional analysis and operator theory. For
example, tensor products are frequently not discussed in a first course in
linear algebra. Likewise for the topics of convergence of nets and the Baire
category theorem in a course in topology, and the connections between
measure and topology in a course in measure theory. For this reason we
have chosen to devote the first ten chapters of this volume (entitled Part I)
to topics of a preliminary nature. In other words, Part 1 summarizes in
considerable detail what a student should (and eventually must) know in
order to study functional analysis and operator theory successfully. The
presence of this extensive review of the prerequisite material means that a
student who is not familiar with one or more of the four basic courses
mentioned above may still successfully read this book by making liberal
use of Part I. Indeed, it should be said that perhaps the only critical
prerequisite for a profitable reading of this book is a certain mathematical
maturity, which, for our purposes, may be taken to mean the ability to
follow and construct -8 arguments, a level of maturity that any talented



Preface

student who has had a good course in advanced calculus will have
attained.

In keeping with our pedagogical intent in writing this book, we have
provided both examples and exercises in copious supply. Indeed, every
chapter contains a number of illuminating examples and is followed by a
collection of problems. (Some problems appear as simple assertions of
fact; in such cases the student is expected to provide a proof of the stated
fact.) In this connection we observe that the problem sets constitute an
integral part of the book, and that the student must study them along with
the text. Working problems is very important in the study of mathematics
in general, of course, for that is how mathematics is learned, but in this
textbook it is particularly important because many topics of interest are
first introduced in the problems. Not infrequently the solution of a
problem depends in part on material in one or more preceding problems, a
fact that instructors should bear in mind when assigning problems to a
class.

While, as noted, this book is intended to serve as a textbook for a
course, it is our hope that the wealth of carefully chosen examples and
problems, together with the very explicit summary of prerequisite material
in Part 1, will enable it to be useful as well to the interested student who
wishes to study functional analysis individually. ' '

An instructor who plans to use this book as a textbook in a course has
several options depending on the time available to him and the level of
preparation of his students. He may wish to begin, for example, by
devoting some weeks to the study of various chapters in Part 1. Whether he
-does this or not, time limitations may make it impossible for him to treat
all of ‘Part II in one semester. With this in mind, we suggest the following
abbreviated syllabus -for a somewhat shorter course of study.

Chapter 11: Read entire text; omit Problems L-Q and U-Y.

Chapter 12: Read entire text; omit Problems R-Y.

Chapter 13: Read entire text; omit Problems S-T.

Chapter 14: Omit the material on Frechét spaces, viz., Examples H-L
and Proposition 14.9; omit Problems Q-W.

Chapter 15: Omit all text after Theorem 15.11; omit Problems O-X.

Chapter 16: Omit the material on dual pairs, viz., everything after

' Proposition 16.12; omit Problems -X.

Chapter 17: Read entire text; omit Problems T-Y.

Chapter 18: Omit the material on approximation theory, viz., everything
after Example D; omit Problems V-W.

Chapter 19: Omit.

In the writing of this book no systematic effort has been made to
attribute results or to assign historical priorities.

The notation and terminology used throughout the book are in essen-
tial agreement with those to be found in contemporary (American)

viii
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textbooks. In particular, the symbols N, Z, R, and C will consistently
represent the systems of positive integers, integers, real numbers, and
complex numbers, respectively. We have also found it convenient to
reserve the symbol N, for the system of nonnegative integers.

Finally, there is one basic convention in force throughout the book: A/
vector spaces that appear herein are either real or complex. If nothing is said
about the scalar field of a vector space under discussion, it is automatically
assumed to be complex.

ARLEN BrROWN
CARL PEARCY

v
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Set theory

We shall assume the reader to be familiar with the elements of set theory.
Nonetheless, we begin with a review of certain set-theoretic fundamentals,
largely to fix notation and términology. (Readers wishing to improve their
acquaintance with set theory, or to pursue in greater depth any of the topics
_ touched on below, might consult [31] or [34]; another excellent source for
most topics is [10].) For one thing, at the most elementary level, we reserve
certain symbols throughout the book for several important sets. The system
of positive integers is denoted by N, the system of nonnegative integers by
N,, the system of all integers by Z, the real number system by R, and the
complex number system by €. The empty set is denoted by &, and if X and
Y are any two sets, the set-theoretic difference {x € X : x ¢ Y} is denoted by
X\Y and the symmetric difference (X\ ¥) U (Y\X) by X V Y. Moreover,
if f is a mapping of X into Y (notation: f:X - Y) and A < X and
B < Y, then f(A) will denote the set {f(x):xe A} and f~!(B) the set
{xe X:f(x)eB}.

The reader is also assumed to be familiar with the notion of a partially
ordered set. In this context our terminology and notation are quite standard.
Thus if X = (X, <) is a partially ordered set, then an element xo of X is
maximal [minimal] in X if there exists no element x of X such that x > x,
[x < xo]. Likewise, if E is a subset of a partially ordered set X and if x, is an
element of X such that x < x, for every x in E, then x, is an upper bound of E.
If the set of upper bounds of E in X is nonempty, then E is bounded above in X.
If, in addition, the set of upper bounds of E possesses a least element, then that
least upper bound is also called the supremum of E and is denoted by sup E..
Dually E is bounded below if the set of lower bounds of E in X is nonempty: if,
in addition, the set of lower bounds of E possesses a greatest element, then that
greatest lower bound is called the infimum of E (notation: inf E). A subset of a

3
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partially ordered set is bounded if it is bounded both above and below. For
finite subsets {x,, ..., x,} of a partially ordered set X we shall also write
X, v - v xpforsup{x;,....x,;and x; A - A x, forinf{x;, ..., x,}. I X
has the property that x v yand x A yexist for every pair of elements x and y
of X, then X is a lattice. If, more generally, every subset of X has both a supre-
mum and an infimum, then X isa complete lattice. A mapping f of one partially
ordered set into another is monotone increasing [decreasing] if x < y implies
f(x) < fO [f(x) = f(y)] and is strictly monotone increasing [ decreasing]
if x < y implies f(x) < f(3) [f(x) > f(y)]. A mapping f of a set X into a
partially ordered set Y is bounded [ above, below] if its range f(X) is bounded
{above, below] in Y.

Example A. The system R of real numbers is a lattice (in its usual ordering).
Indeed, we have

svit=3s+t+|s—1t]]

] and

sat=3s+t—1s-1]]

for every pair of real numbers s and r. If t is a real number the numbers ¢ v 0
and — (¢t A 0) are called the positive and negative parts of t, and are denoted
by t* and ¢, respectively. Note that t* and ¢t~ are nonnegative and satisfy
the conditions :

tt 4+t = |t},
tt —t7 =1,

for every real number .

Example B. Every bounded nonempty subset of R has a supremum and an
infimum in R (this is, in effect, one formulation of the Dedekind postulate; a
lattice with this property is said to be boundedly complete). It follows that every
closed interval [a, b] (={te R:a < t <'b}) is a complete lattice. While R
itself is not a complete lattice, it is very useful to imbed R in a complete lattice.
To do this we simply introduce two new “numbers,” + oo and — o0, and define
—o0 < +00 and also — <t < +00 for every 7 in R. The enlarged set
RuU {+00} u{—o0} is called the extended real number system and will
consistently be denoted by R*. It is clear that R" is a simply ordered complete
lattice, and that if E is a subset of R that is not bounded above [below] in R,
then sup E = + oo [inf E = — 0] in R, e thake a partial extension of the
operation of addition to R® by defining 4

‘ t+ (o) =(+0)+1=+0w0
for every real number ¢, and

(+o0) + (£0) = Lo0.



