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Preface

This book is devoted to membrane bioenergetics, one of the most rapidly “growing
points™ of physico-chemical biology. In the last 2 decades, the developement of
bioenergetic research has been so tempestuous and debates on crucial problems
so uncompromising that we find it necessary to summarize, in a calm and orderly
manner, the firmly established facts and separate them from what belongs to the
realm of speculation. We will try to consider a great variety of described events
within the framework of a single coherent concept using the same terminology.

Such is the aim of this book meant for a wide range of readers, from specialists
working in this field, to university students taking an in-depth interest in
biological energy transductions. In general, the monograph may serve as a
textbook. My goal was to present an extensive analysis of the field and I hope
that the majority of subjects related in some way to membrane bioenergetics are
at least mentioned in the book and are included in the Subject Index. Certain
sections are written in greater detail, particularly those dealing with novel and
promising approaches (especially when the studies were carried out by our group:
here, I would like to ask my reader for some leniency - in a way, I am in the
shoes of the author of a chronicle dwelling on events he has witnessed at first
hand).

The text is supplemented with a list of references. Albeit a long one, it includes
but a small part of the membrane bioenergetic literature. While compiling this list,
I gave preference to the pioneering publications on the subject matter and to the
latest reviews or experimental papers containing the most important references.
This may be helpful for finding further essential information, if necessary.

I am very grateful to Dr. A. A. Konstantinov and all the participants in the
theoretical bioenergetics seminar at the A. N. Belozersky Laboratory of Moscow
University for discussions and advice, to Drs. L. E. Bakeeva and D.B. Zorov
for microphotographs and to Ms. O.0O. Malakhovskaya, Mr. A.L. Drachev,
Ms. T.N. Konstantinova, Mr. 1. S. Kochubey and Ms. N. M. Goreyshina for their
assistance in preparing the manuscript.

January, 1988 Vladimir P. Skulachev
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1 Introduction

1.1 A “Biology Building” and the Place of Bioenergetics

To classify biological sciences, one may use at least three different criteria:

1. The level of complexity of the subject matter;
2. The functional aspects;
3. Methodology.

In Fig. 1, we tried to construct a “biology building” by using these criteria as
three spatial dimensions. The building is eight storeys high, assuming that each
level of complexity occupies one storey. The top storey is for biosphere studies.
Ecology comes next down the ladder. It deals with the communities of different
living species. The next storey is occupied by a group of biological sciences inves-
tigating individual species of animals, plants, bacteria and their taxonomy. In
fact, here we have the classical aspects of zoology, botany, bacteriology and virol-
ogy. All these studies may be called “biology of species” to distinguish them from
those occupying the higher and the lower storeys. The sciences studying the struc-
ture and functioning of individual organisms and their organs belong to the realm
of anatomy and physiology. Next comes the living cell. A corresponding science
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Fig. 1. The “Biology Building™:
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2 1 Introduction

is cell biology, or cytology. The study of intracellular organelles and their frag-
ments, homogenates, cell ghosts and other cell-free supramolecular systems may
be regarded as subcellular biology. Investigations at the level of functioning bio-
logical macromolecules or their complexes are the domain of molecular biology.
This is the last and simplest level where the biological function is still present. The
structure and physico-chemical properties of pure substances composing the liv-
ing organism are studied at the ground floor level, so to speak. Since most of them
are organic compounds, the science is defined as bioorganic chemistry. Some-
times biochemists deal with inorganic substances; in these cases one may speak
of bioinorganic chemistry. However, it makes little sense to consider it as a special
science, for the number of its objects is rather small.

This seems about all there is to the “horizontal” sciences. Let us now consider
“vertical” sciences, proceeding from the functional principle. The four most im-
portant functions are inherent in all living organisms, namely (1) self-reproduc-
tion, (2) the ability to obtain energy from external sources, (3) the ability to utilize
chemical substances of the environment for synthesizing the components of the
body and (4) the ability to perceive and process signals from the outer as well as
from the inner medium of the organism. Each of these functions can be studied
at different “horizontal” levels of organization.

Genetics is the science dealing with self-reproduction. It is bioenergetics that
in keeping with the “vertical” principle should deal with the function of energy
supply. Accordingly, we may define bioenergetics as a branch of of functional bi-
ology studying (1) transduction of the energy of external sources into utilizable
Jorms and (2) the use of this energy when various types of work are carried out by
the living systems.

In conformity with this definition, one may distinguish, e.g. molecular bioe-
nergetics, cellular bioenergetics, as well as the bioenergetics of the organism, of
biocenosis and of the biosphere.

Continuing the functional classification, we come to the science investigating
the supply and conversion of substances rather than of energy. This field is
usually regarded as a part of biochemistry, enzymology, etc. However, taking into
account the great significance of functional biology which, in fact, integrates the
knowledge furnished by the “horizontal” biological sciences, we think that a dis-
cipline studying each of the four main biological functions should be qualified as
a separate science having a name of its own. By way of analogy with genetics and
bioenergetics, the science investigating the metabolism of substances may be cal-
led “metabolics”. As to a future science which will encompass all the biochemical,
physiological, etc., studies on the reception, transmission and the processing of
signals of different sensors, it may be defined as “sensorics”.

Yet another way of classifying biological sciences may be based on the meth-
odology employed. In this context, three principal methods should be taken into
account: the physical, chemical and biological ones. In the first case, the corre-
sponding science is biophysics and in the second, biochemistry. As to biological
methodology, it may be exemplified by evolutionary, philo- and ontogenetic ap-
proaches, the natural selection doctrine, etc.

More “storeys™ and sections can be added to the “biology building” shown
in Fig. 1, if necessary. For instance, the development of mathematical approaches
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may generate some day a need of having four, rather than three methodological
sections, etc.

The scheme shown in Fig. 1 considers only the pure (fundamental) aspects of
biology. A similar “building” may be constructed for applied biology (biotech-
nology).

Any pure biology research may find a “room” in the given scheme. In partic-
ular, the aim of this book is to consider the problems located in “rooms” B, I-111,
5-8. These coordinates denote the physical, chemical and biological aspects of
bioenergetics at the levels descending from the living cell down to the organic and
inorganic molecules of biological origin. We shall concentrate on the membrane-
linked bioenergetic systems of key significance for obtaining the biologically con-
vertible energy. Priority will be given to biological methodology: after all, the
author is a biologist himself.

1.2 Essential Definitions

1.2.1 Energy-Transducing Membranes

Biological membranes may be defined as natural films of 5-7 nm thickness con-
sisting of proteins and lipids. The lipid constituent is more or less standard in vari-
ous biomembranes. It is usually represented by phospholipids or, much less fre-
quently, by glyco- or sulpholipids. It is its protein composition that determines
the biomembranés specific nature, its “face”. Among the membrane proteins, one
may find many enzymes, porters, receptors and pigments.

The most important function of many types of biomembranes consists in the
transduction of energy from one form to another. This function is carried out by
specific proteins plugged through the hydrophobic layer of the membrane imper-
meable to the majority of solutes which are present in the membrane-washing so-
lutions.

Any energy-transducing membrane is competent in the interconversion of
(1) the chemical energy of respiratory substrates or ATP, or light energy and
(2) the electric energy of the transmembrane potential difference (AW) or the os-
motic energy of transmembrane gradients of solutes. Besides, in some mem-
branes, the transduction of electric or osmotic energy to a mechanical one has
been shown to occur. These systems are responsible for the motility of prokary-
otes. In certain tissues of warm-blooded animals and some plants, production of
heat due to the discharge of the membrane potential is of functional significance
and can be therefore regarded as a special type of membrane-linked energy trans-
duction.

Among membranes which clearly fall into the energy-transducing category,
the following ones are most significant: the inner mitochondrial membrane, the
inner (cytoplasmic) bacterial membrane, the outer membrane of eukaryotic cells
(plasmalemma), the membrane of bacterial chromatophores, the thylakoid mem-
brane of chloroplasts and cyanobacteria and the vacuolar membrane (tonoplast)
of plants and fungi.
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Fig.2. Membrane structures of the animal cell. Filled solid contours: energy transduction
processes are firmly established. Filled dashed contours: energy transduction is impossible.
Empty contours: energy transduction is possible, but is yet not directly proved

The energy transduction ability is not a common propoerty of all the biomem-
branes. At least in two cases it is quite clear that the membrane cannot be ener-
gized. We mean here, the outer membranes of mitochondria and of Gram-nega-
tive bacteria containing special proteins, the porins, which form rather large pores
permeable to low-molecular mass compounds [1046, 279, 864]. The role of these
membranes is largely confined to that of the barriers for proteins localized in the
periplasm of bacteria or in the intermembrane space of mitochondria. Besides,
certain receptor-like proteins have also been found here. Sometimes these recep-
tors are identical to porins. In animal cells, the outer mitochondrial membrane
proves to be the only porin-containing structure [864]. Nevertheless, at least one
more membrane resembles the outer membrane of mitochondria in that it is per-
meable to small hydrophilic solutes. This is the peroxisome membrane. Features
similar to outer mitochondrial and bacterial membrane seem to be inherent in the
outer membrane of the chloroplast envelope [732].

Traditionally, membranes of the endoplasmic reticulum and the cell nucleus
are regarded as incompetent in energy transductions. However, recently indica-
tions were obtained {1635, 89] that membranes of the Golgi apparatus can trans-
duce ATP energy to the pH gradient, and so the question of the bioenergetic func-
tions of the related reticular and nuclear membranes needs further investigation.
The present state of the problem with respect to the animal cells is illustrated in
Fig.2.
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1.2.2 Coupling Ions

In the great majority of cases, the membrane-linked energy transductions include
the following chain of events:

energy source — fl — the work, 1)

where Afil is the transmembrane difference in the electrochemical potentials of an
ion (I). (The physical nature of Afil will be considered in Sect. 1.3, conformably
to ApH.)

Equation (1) means that the energy is first utilized to transport an ion against
the electric field and/or in the direction of its concentration increase. This process
is often defined as energization of the membrane. Then, the obtained Afil is used
a a driving force to perform various kinds of work. These processes of utilization
of the external energy and performance of work appear to be coupled to forma-
tion and use of Afil so that ion I can be called a “coupling ion”. -

Until recently, it was generally accepted that in energy-transducing mem-
branes, H™ plays the role of a coupling ion, as it was first suggested by P. Mitchell
in 1961 [973]. The only exception was assumed to be the animal cell outer mem-
brane employing Na™ instead of H* as the ion which couples ATP hydrolysis to
the accumulation of various solutes inside the cell. However, according to recent

Table 1. Bioenergetic classification of membranes

A. Energy-transducing membranes using H* as the coupling ions

. Inner mitochondrial membrane

. Thylakoid membrane of chloroplasts and cyanobacteria

. Inner envelope membrane of chloroplasts

. Inner (cytoplasmic) membrane of many bacteria

. Membrane of bacterial chromatophores

. Outer cell membrane of plants and fungi

. Vacuolar membrane of plants and fungi (tonoplast)

. Membrane of chromaffin and some other secretory granules in animal cells

B. Energy-transducing membranes using Na* as the coupling ion
1. Outer membrane of animal cells
2. Inner (cytoplasmic) membrane of some marine alkalotolerant aerobic bacteria or
marine anaerobic bacteria

RN NHAWN =

C. Energy-transducing membranes specialized in ion sequestration
1. Lysosomal and probably Golgi apparatus membranes (ATP — 4{iH)
2. Outer cell membranes of some animal cells, e.g. of gastic mucosa cells (ATP — 4 pH)
3. Sarcoplasmic reticulum and other Ca?*-storing vesicles (ATP — A4pCa)

D. Membranes that are unable to transduce energy
1. Outer mitochondrial membrane
2. Outer envelope membrane of chloroplasts
3. Outer bacterial membrane
4. Peroxysomal membrane

E. Relation to energy-linked functions remains obsure
1. Endoplasmic reticulum (microsomes)
2. Membrane of the cell nucleus
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observations in certain bacteria, (1) Na™* substitutes for H* in the process of
membrane energization and (2) AfiNa is then utilized to support all kinds of mem-
brane-linked work. This means that H* is not unique as the coupling ion (see
Chap. 7).

There are some other ions besides H* and Na* which can also be transported
across the membrane against their electrochemical potential. For instance, in the
endoplasmic reticulum of muscle and some other tissues, and in the outer mem-
brane of many cells, there is Ca®*-ATPase, transporting Ca2* at the expense of
the ATP energy. However, the role of this process is simply to sequester Ca?™*
from the cytosol and AfiCa is never used to support the work. Similar reasoning
seems to be true for K* ions pumped by Na*/K*- or H*/K*ATPases (see
Sects.4.5.3 and 7.1.3.2 respectively), and for C1~ ions pumped by halorhodopsin
(Sect. 3.5.8.1).

The classification of biological membranes is given in Table 1. Coupling mem-
branes are listed in groups A and B. These energy-transducing membrane struc-
tures couple energy-releasing and energy-consuming processes via circulation of
an jon (H™ in group A, or Na* in group B). Group C includes membranes in
which Afil formation is the final event of the energy-transducing process. This is
the case when the function of the membrane consists in ion sequestration.
Group D indicates membranes definitely incapable of energy transduction. Some
cases, when the existence of energy-linked functions is an open question, are listed
in group E.

1.2.3 Convertible Energy Currencies of the Living Cell

Energy transduction can occur (1) in membranes or (2) in non-membranous com-
ponents of the cell, i.e. in cytosol, myofibrils, microfilaments, microtubules or the
nucleus. In these two groups of processes, two different forms of convertible en-
ergy currency are used. These are Afil and ATP in (1) and (2) respectively. Ajfil
can be reversibly converted to ATP. These processes are catalyzed by H*-ATP
synthases (H " -ATPases) in “protonic” membranes bearing AfiH and by Na*- or
Na*/K*-ATPases in “sodium” membranes which bear AjiNa.

In Fig. 3a scheme is shown which describes the energetics of living cells using
AH as the convertible membrane-linked energy currency. According to the
scheme, the energy of the light or respiratory substrates can be utilized by en-
zymes of the photosynthetic or respiratory redox chains or (in halobacteria) by
bacteriorhodopsin to form AiiH. The latter can support various types of work in
the “protonic” membrane, with ATP synthesis being the most important. Sub-
strate-level phosphorylations serve as an alterantive mechanism of ATP forma-
tion that operates with no AfiH involved. Such phosphorylations occur in the gly-
colytic chain (glyceraldehyde phosphate dehydrogenase and enolase reactions)
and in oxidative decarboxylation of a-ketoglutarate [1377, 1380]. AfH-linked
ATP formation is a major but not the only process of AfiH — chemical work en-
ergy transduction. AtH-supported synthesis of inorganic pyrophosphate and the
transfer of reducing equivalents in the direction of more negative redox potentials
(e.g. reverse electron transfer in respiratory chain and transhydrogenase reaction)
belong to the same type of energy transduction. The AfiH-driven uphill transport



