PROLOG FOR PROGRAMMERS

Feliks Kluzniak
Stanistaw Szpakowicz

R

PROLOG FOR PROGRAMMERS

Feliks KluZniak
Stanistaw SzpakdWi¥z

Institute of Informatics
Warsaw University
Warsaw, Poland

With a contribution by Janusz S. Bier

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers
London Orlando San Diego

New York Austin Montreal Sydney
Tokyo Toronto

COPYRIGHT © 1985, BY ACADEMIC FRESS INC. (LONDON) LTD.

ALL RIGHTS RESERVED.

NO PART OF THIS PUSLICATION MAY BE REPRCDUCED OR

TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC

OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR

ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
. PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road
LONDON NW1 7DX

Unitec States Edition published by
ACADEMIC PRESS, INC.
Orianco, Florida 32887

British Library Cataloguing in Publication Data
Kluzniak, Feliks

Yrolog for programmers.

1. Programming languages (Electronic computers)
2. Electronic digital computers——Programming
* I. Titdle 1l. Szpakowicz, Stanisfaw

000.64°24 QA76.7

Library of Congress Cataloging in Publication Data
o

Kiuéaiak, Feliks.
Piolog for programmers.

Includes index.

1. Prolog (Computer program language) I. Szpakowicz,
Stanistew. II. Bien, Janusz St. III. Title.
QA76.73.P76KS8 1985 001.64°24 34-14520
ISBN 0-12-416520-6 (alk. paper)

PRINTED IN THE UNITED STATES OF AMERICA

»
6 17 38 89 98765432

F-olog is a ron-conventional programming larguage for g wide spectriini
of applicatiors, inclading language processing, data base modelling and im-
plementation, symbolic computing, expert systems, computer-aided design,
simulation, software prototyping and planning. A version of Prolog has been
choser as a sy:ters programming language for so-called fifth-generation com:
puters; experi:nents with systems programming and concurrent programiming
are in progress)

Prolog, devised by Alain Colmerauer, is a logic programming language.
Logic programming is a new discipline which lends a unifying view to many
demains of computer science. Prolog can be classified as adescriptive pro-
giamming lan_u-ige, as opposed to prescriptive {or imperative) languages such
as Pascal, C 2rd Ada. In principle, the programmer is only supposed to
specify what is to be done by his or her program, without-bothering with
how this should be achieved. Robert A. Kowalski has coined the “‘equation’’

Algorithm = Logic + Control,

v.1ich empha. izes the Jistinction between the whar (logic) and the how (voit-
trol). The programmer need not always specify the control coinponesii. i
pracice howeer, Prolog can be treated as a vrocedural laaguage.
Prolog ic st siardardized, 2nd it comes in maany different fiavouss.
Ti 2 riost widespread dialect of Prolog is Prolog-10, originally impicnented
b, David . L. Warren for DEC-10 computers. We Jesciibe a varaut of
tui- dialct, based on an inierpreter written in Pascal especially for this vock.
The mair. pa:it of the book is Chapters 1 -5. Chapters 1 uiw 3
are an introcuction to Prolog, intended for thoce who use prescriptive
languages in their everyday practice. Both intuitions and the presentaiion
are “‘practiczl'y” biased, but we assume the reader has a certain amount of*
programming :xperience and sophistication. Chapter . explains Prolog in

xi

xii . Preface

terms of logic. It requires no deep knowledge of mathematics and is intended
as a counterpoint to Chapter 1, but can be skipped on a first reading. Chapter
4 contains some useful programming techniques and hints. Chapter 5 is a
reference manual for the version of Prolog described in this book. In addi-
tion, Chapter 8 is a discussion of two rather illuminating applications.

For those who wish to gain more insight into the language and its inner
workings, Chapter 6 introduces basic principles or Prolog implementations.
An implementation of the dialect described in this book is presented in
Chapter 7 and in the appendices (which contain complete listings). We used
this implementation to test our examples, including the case studies of
Chapter 8.

Chapter 9, written by Janusz S. Bien (who also did most of the bibli-
ography), briefly outlines the most characteristic features of several other
Prolog dialects.

The material in this book, supplemented by some additional reading and
a programming assignment, can be used for a two-semester course at the
level of third-year computer science majors. Re-implementation of or exten-
sions to the interpreter of Chapter 7 might make interesting assignments for
a translator-writing course.

While working on this book, we used the computing facilities of the In-
stitute of Informatics, Warsaw University. We would like to thank Pawel
Gburzynski and Krzysztof Kimbler, who helped us switch almost painlessly
to a different machine when the one we originally used broke down for a
protracted period of time. We thank David H. D. Warren for permitting
us to include the listings of WARPLAN. We are also grateful to all those
who have provided us with logic programming literature for the past 10 years.

4.4,

vii

CONTENTS

PREFACE Xi
1. AN INTRODUCTION TO PROLOG !
1.1. Data Structures 1
1.2. Operations 11
1.3. Control 24
2. PROLOG AND LOGIC 4]
2.1. Introduction 41
2.2. Formulae and Their Interpreiations 41
2.3. Formal Reasoning 44
2.4. Resolution and Horn Clauses 45
2.5. Strategy 51

3. METAMORPHOSIS GRAMMARS: :
A POWERFUL EXTENSION 59
3.1. Prolog Representation of the Parsing Problem 59
-3.2. The Simplest Form of Grammar Rules 67
3.3. Parameters of Non-terminal Symbols 69
3.4. Extensions 73
-3.5. .Programming Hints 81
4. SIMPLE PROGRAMMING TECHNIQUES 87
4.1. Introduction - 87
4.2. Examples of Data Structures 88
4.3. Some Programming Hints 121
Examples of Program Design 130

viii

5. SUMMARY OF SYNTAX AND BUILT-IN PROCEDURES

S.1. Prolog Syntax

5.2. ,Byilpin Precedures: General Information
5.3. Convenience .
5.4. Arithmetic

5.5. Comparing Integers and Names

5.6. Testing Term Equality

5.7. Input/Output

5.8. Testing Characters

5.9. Testing Types

5.10. Accessing the Structure of Terms

5.11. Accessing Procedures

5.12. Control

5.13. Debugging

5.14. Grammar Processing

5.15. Miscellaneous

6. PRINCIPLES OF PROLOG IMPLEMENTATION
6.1. Introduction
6.2. Representation of Terms
6.3. Control
6.4. Tail Recursion Optimisation
6.5. Bibliographic Notes

7. TOY: AN EXERCISE IN IMPLEMENTATION
7.1. Introduction
7.2. General Information
7.3. The Toy-Prolog Interpreter
7.4. Interpretation of Prolog-10 in Toy-Prolog

8. TWO CASE STUDIES
8.1. Planning
8.2. Prolog and Relational Data Bases

9. PROLOG DIALECTS
9.1. Prologl
9.2. Prolog II
9.3. Micro-Prolog and MPROLOG

APPENDICES
A.l. Toy-Prolog Interpreter
A.2. Kernel File

Contents

143
143
147
149
150
151
152
153
158
158
159
160
163
164
165
165

167
167
168
178
179
183

185
185
186
187
201

215
215
228

255
255
256
259

261
262
331

Contents
A.3. “Bootstrapper”’

A.4. User Interface and Utilities
A.5. Three Useful Programs

REFERENCES

INDEX

ix
334

341
373

387

1 AN INTRODUCTION TO PROLOG

Prolog is an unconventioral language. In particular, its data structures are
quite different from those found in other programming languages. As it is
difficult to talk about a computation without understanding the sort of
data that can be processed, we shall discuss data structures at some
length before coming to the questicn of how to do anything with them.
Have patience.

1.1. DATA STRUCTURES

L.L.1. Constants

Genstantd are the primitive building blocks of data structures. Con-
stants have no structure, so they are often called ‘*atoms.’’ They: repre-
sent only themselves—they can be thought of as identical with their
names.

In Basic or Fortran, 1951 is a constant. The integer variable J is not,
because it represents both a memory cell and—in certain contexts—a
value. The value is something quite different from the variable itself.

One is accustomed to treating 1951 as a number greater than 1948, but
this is because in programming languages constants usually belong to
certain types. The usual properties of integer constants '(their ordering,
ability to be used in arithmetic operations, etc.) are taken for granted by
virtue of their belonging to the type integer, just as in Pascal blue is a
successor of red when one writes

colour = (red, blue, green) -

2 1 An Introduction to Prolog

- Such type definitions impose a certain structure on the otherwise undiffer-
entiated universe of individual symbolic constants, each of which has
- only one attribute: its name.
The interpretation of a constant rests solely with the programmer.
1951 can be the price of a computer, the weight of a truck, the time of day
or a year of birth. One can always multiply it by 4, but this scldom makes
sense when it represents a car’s registration number. The constant blue is
less burdened with inadequate interpretations, but one might wish not to
-have the colqurs ordered. Constants are the primitives, and collecting
them into types should only be done when necessary.
~ jgf Prolog, as in other symbolic languages (such as Lisp) there is no
need to declare constants or group them into types. One can use them
freely, simply by writing down their names.
A legal constant name is one of the following:

—A sequence of digits, possibly prefixed by a minus sign by convention,
such constants are called integers (e.g. 0, —7, 1951);

~—An ideatiier, which may contain letters, digits and underscores but
must begin with a lower case letter (e.g. q, aName, number_9);

—A symbol which is a nonempty séquence of any of the following char-
acters:

+ -+ / < = >, :78% & @ # \ ~
* ~—Any one of the characters
, or ; or ' ..o Tt T
—The symbol [] (pronounced “nil’’);
—A quoted name, written according to the Pascal convention for strmgs
an arbitrary sequence of characters enclosed in apostrophes, an

apostrophe ®eing represented by two consecutive apostrophes (e g.
"Can”’t do this.’ consists of 14 characters) L=

All of theae constants are purely. symbollc and have no inherent intes-
pretation. Hgwever, some pnmmve operatnons in Prolog do treat them in
a special way _ -

—-Anthmetlc Operatlods interpret integers as representatlons of mteser
values (miy <an also create new integers);

'«Compariy | operations interpret integers as mteger values, and all
othier co! ts as representations of thig'sequences of characters form-
ing their names (these are hxbographl’cally ordered by ﬂe underlying

» collating sequence); :

—Input/output operations interpret all- symbols as sequences of charac-

ters forming their names.

1.1. Data Structures 3

Each occurrence of a constant’s description (name) is treated as re-
ferring to the same constant, but of course we are free to interpret each
separately.

1.1.2. Compound Objects

An important aspect of the expressive power of a programming lan-
guage is its ability to directly describe various data structures. Of the
popular and widely used languages, Pascal is the most powerful in this
respect, but it has several shortcomings. (This is not a criticism of Pascal:
our point of view does not take into account important design objectives
such as a safe type mechanism.)

Firstly, type definitions in Pascal are overspecified. It is impossible to
program general algorithms which process stacks or trees regardless of
the type of their elements. (Records with variants are only a rough ap-
proximation to generic data types found in some more recent program-
ming languages.)

Secondly, those data structures which change their form dynamically
can only be built with pointers. One must therefore deal with the struc-
tures at a very low level: the level of representation rather than the con-
ceptual level at which many other things are done in Pascal. Programs
using pointers-are error-prone and hard to understand, because opera-
tions on such data structures are encoded rather than directly expressed.

The third shortcoming has a similar effect. Ironically, Pascal types
are also underspecified, in that there is no way to directly express certain
quite natural constraints on the arguments of operations. One cannot say
that the function POP can only be applied to a non-empty stack; one can
only write a piece of code (hopefully correct) which checks the argument.

It is interesting that these shortcomings are not shared by Prolog data
types (or rather by their counterparts, since ‘‘type”’ is not really a Prolog
concept). And yet Prolog data structures are very simple. Let us look at
the details.

FuNcTORS

To describe a compound object, it is not enough to list its compo-
nents. The ordered pair (19, 24) can be an object of the type

rectangle = record
height, width : integer
end

4 1 An Introduction to Prolog

as well as an object of the type

timeofday = record
hour, minute : integer
end

The complete description of a compound object must include a defini-
tion of its structure. Structure is defined principally by describing the way
in which the object and its components are interrelated. Describing these
interrelationships often consists in simply giving a type name to an aggre-
gate of components (as in the example above). It is the programmei’s
responsibility to interpret this name in terms of real-world relations be-
tween entities being modelled by the program.

In conventional programming languages, the structure of a compound
object is usually described in a declaration associating the object with a
type definition. The type definition iists the name of the object—compo-
nent relationship (type name) and, possibly, additional information about
the structure (types) of the components. The object is described by its
name (or the name of a pointer). The name’s definition is textualiy remote
from its occurrences.

A different approach is taken in Prolog. Here, the type name is an
integral part of all the occurrences of the object’s description. The nota-
tion is very simple: a description of a compound object is the type name
followed by a parenthesized sequence of descriptions of its components,
separated by commas. We write either

rectangle(19, 24)
or .
timeofday(19, 24).

The notation is similar to that used for writing functions in mathemat-
ics. Terminology reflects this similarity. The type’s name is called a func-
tor, and the components are called arguments. There is more to it than
superficial similarity of two simple syntactic conventions. One can cer-
tainly regard a type such as recrangle as a function mapping components
into compound objects. From this point of view it is not surprising that we
can have functors with no arguments: these are simply constants. Some-
times it is also useful to have one-argument functors. For example, the
integer 2 can be represented by the object successor(successor(zero)) (the .
fact that 2 > 1 > 0 is evident from its structure).

From the discussion above, it should be obvious that the important
attributes of a functor are both its name and its arity (i.e. the number of
arguments it takes). In Prolog, we can use both

timeofday(17, 13)

1.1. Data Structures 5

and
timeofday(1713)

in the same program. Even if the intended interpretation is the same,
these are two different objects: one has two components, and the other
has one. There are also two different functors, both named timeofday.
Whenever we speak of a functor in a context which gives no indication
about its arity, the arity must be given explicitly. The conventional nota-
tion is to write it after a slash: timeofday/2 or timeofday/1.

The lexical ruies for forming functor names are the same for all ari-
ties, but integers can only be constants. Thus

123(a, b)
is incorrect, but
'123’(a, b)
is perfectly all right. Also, [] is only a constant.

OBJECT DESCRIPTIONS

Descriptions of constants and compound objects are referred to as
terms. Usually, the objects themselves are also called terms: this causes
no confusion in practice, but in this chapter we shall try to distinguish
between the two meanings.

The arguments of a term are arbitrary terms. For example, one can
write a term describing a ‘‘record’’:

customer(name(john, smith),
address(street(north_ave), number (173))).

Of the various functors in this example, the outermost, customer/2, can
be said to define the general structure of the term. It is called the main
functor, or principal functor. Similarly, name/2 is the main functor of the
first argument.

Here is another example of a common data structure. A list can be
defined as either the empty list, or a list constructed of any object (a head)
and a list (a tail). A list of the first three letters in the alphabet could then
be described by the term

cons(a, cons(b, cons(¢, emptylist))).

The following term would be a description of the two-element list con-
structed of the above list and a list containing the integer zero:

cons(cons(a,cons(b,cons(c,emptylist))),cons(0,emptylist))

6 1 An Introduction to Prolog

Even this small example demonstrates that nested parentheses can be
difficult to read. Prolog therefore provides syntactic sugar to hide this
standard or canonic form of terms. Instead of writing v

successor(successor(zero))

~ one can choose to use successor as a prefix functer and write
SUCCESSOr SUCCessor zero.

Alternatively, successor can be made a postfix functor:
ZE€ro Successor successor.
Functors with two arguments can be declared as infix functors, e.g.
&(a,b)

can be written as
a&b.

The term
a&b&c

would be ambiguous, so an infix functor is either left-associative or right-
associative (or non-associative, in which case the term is incorrect). If & is
right associative, the term's standard form is

&(a, &(b,c)): _
if & is left-associative, then the term stands for
&(&(a,b), c).

We can use parentheses to stress or override associativity. If & is right-
associative, then

a&bé&c
is equivalent to
a&(b&c)
but not to
(a&b)é&ec,
which stands for
&(&(a,b),c)

regardless of associativity.

1.1. Data Structures 7

To make parentheses even less frequent, prefix, postfix and infix
functors are given priorities. Functors with lower priority take prece-
dence over those with a higher priority (a Prolog-10 convention, different
from that used in other programming languages and mathematics). For
example, if the priority of * is lower than that of +, then

34 +5 and 5+3%4
denote

+(*(3,4),5) and +(5,%(3,4))
' We can use parentheses to stress or override priorities, by writing
(3+4)+5 or 3x(4+5).

Prefix, postfix and infix functors are usually referred to by the generic
name operators. Remember that these are not operators in any conven-
tional sense: they are only a syntactic convenience.

Operator names may not be quoted. If an operator is to be writt2n in
standard form or with a different number of arguments, it must be quoted.
If + is an infix functor,

~at+b, '+(a,b) and ’+’(a,b,c)
are correct terms, but
+ and +(a,b)

are not.

It is also possible to declare mixed operators, i.e. functors such as the
minus sign, which is both prefix and infix in ordinary arithmetic. Details
about declaring prefix, postfix and infix functors can be found in Sections
5.1 and 5.7.3. .

For the time being, we shall only use infix functors to write terms
representing lists. However, instead of

a cons b cons ¢ cons emptylist

we shall use a more concise notation, modelled after Lisp. The empty list
will be denoted by the constant [] (pronounced *‘nil’’), and the construct-
ing functor — by the right-associative infix functor ./2. Our two lists are
then written as

a.b.c.[]
and
(a.b.c.[]).0.0]

8 1 An Introduction to Prolog

The convention is arbitrary, in that any constant and two-argument func-

tor would do in place of [] and the dot. It is more convenient than others,

because these are the symbols expected by several built-in procedures.
(You can write such terms after feeding Prolog with

:- op(800, xfy, ’.").

However, a minor technical difficulty makes it impossible to use the
period as a functor when it is immediately followed by a white space
character. such as blank, tab or new line. This is a nuisance, and Prolog
provides spec:al syntactic sugar for lists: it is somewhat confusing, so we
will put it off until Chapter 4.)

STRINGS

Characters are constants whose names consist of single characters.
One can use quoted names for characters which are not correct identifiers
(e.g. ', (", ’3’; and 'x’ is equivalent to x).

Strings are lists of characters. One can also write them in double
quotes. For example

”string” and ay aravan
stand for
s.t.ring.f] and NRRRERN §

{Actually, the convention adopted in this book is different from that
of Prolog-10. There, a string denotes a list of ASCII codes and not a list of
characters, so '’string”’ stands for

115.116.114.105.110.103.(].

Similarly, in Prolog-10 operations for reading and writing characters deal
directly with ASCII codes. We refuse to accept these conventions.)

1.1.3. Variables

Objects discussed so far are all, in a sense, constant. Their structure
is fixed, we know everything about them and cannot learn anything new.
A programming language in which one could specify only such fully de-
fined objects would hardly be interesting. One must be able to use objects
whose complete form is defined dynamically during a computation.

In Prolog, the simplest such as-yet-unknown objects are called vari-
ables (do not confuse them even for a moment with the variables of
conventional programming languages!). The term denoting a variable is

i.1. Data Structures 9

cailed a variable name (this is also usually called a variable: as with terms
and objects, we shall try to maintain the distinction throughout chapter [).
A variable name is written as an identifier starting with an upper casc
letter or an underscore (e.g. Q, Number_9, _nnn).

A variable is an object whose structure is totally unknown. As &
computation progresses, the variable may become instantiated, i.c. a
more precise description of the object may be determined. The term
embodying this description is called the variable's instantiation. An in-
stantiated variable is identical with the object described by its instantia-
tion, so it ceases to be a variable, although the object can stiil be referred
to through the variable’s name. (In general. a vanable may be instantiated
also to another variable—we shall soon see the meaning of this.)

There is also an alternative terminology. One savs that a free (or
unbound) variable becomes bound to another term and is henceforth in-
distinguishable from that term (which is called its binding). The variable
becomes ground if its binding contains no variables. This terminology
brings to mind the process of binding formal parameters to actual parame-
ters. If the formal parameters were not allowed to change their value (as
in pure Lisp, say), the similarity would be very close indeed, except that a
binding need not be ground.

Intuitively, Prolog variables are somewhat like the variables used in
mathematics. When we say that

fx) =e" + 3x

is a function of one variable, we mean that the equation allows us to
determine the function’s value for any (one) given argument. The variable
denotes a single (albeit arbitrary) substitution and is not in itself an object
to which values can be assigned.

You can also regard a Prolog variable as an “"invisibie™ pointer. When
not free, the pointer is automatically dereferenced in 1 contexts. so it is
impossible to distinguish it from the referenced object: in particular, it is
impossible to exchange the object for something else.

1.1.4. Terms

If one thinks of a type as a set of objects, then a term is also a
definition of a type. The term Variable3 describes the set of all objects,
because a variable can be instantiated to anything. On the other hand, on¢
can have a very precise type specification. For example, the term a.b.c.[]
describes a set containing only one object: the list of length 3, whose first
element is a, whose second element is b and whose third element is c.
There is a wide range of choices between these extremes.

