Ly

UNIX®
Database
Management
Systems

UNIX"
Database
Management
- Systems

Ulka Rodgers

YOURODN PRESS
_Prentice Hall Building
Englewood Cliffs, New Jersey 07632 -

/93 Voo

Library of Congress Cataloging-in-Publication Daia

RoocEers, ULka (date)
UNIX dJatabase management systemns / Ulka Rodgers.
p- cm. ’
Bibliography: p.
Includes index.
ISBN 0-13-945593-¢
1. Data base management. 2. UNIX (Computer operating system)
I. Title. II. Title: UNIX data base management systems.
QA76.9.D3R65 1990
005.75'6—dc 19 89-30740
. Cip
Cover design: Lundgren Graphics. Ltd.
Cover photo credit: Slide Graphics of New England, Inc.
Manufacturing buyer: Mary Ann Gloriande

© 1990 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

m

This book can be made available to businesses
and organizations at a special discount when
ordered in large quantities. For more information
contact:

Prentice-Hall, Inc.

Special Sales and Markets
Coliege Division

Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be
reproduced. in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 8 7 6 5 43

ISBN 0-13-945593-0

PRENTICE-HALL INTERNATIONAL (UK) LiMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PrenTice-HarL CANADa INC., Toronto

PreNTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED. New Delhi
PrReNTICE-HALL OF JaPAN, INC., Tokyo

SiMON & ScHUSTER Asia PTE. LTD., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LIDA., Rio de Janeiro

Selected titles from the YOURBDN PRESS COMPUTING SERIES
Ed Yourdon, Advisor

BAUDIN Manufacturing Systems Analysis with Application to Production Scheduling

BELLIN AND SUCHMAN Structured Systems Development Manual

BLOCK The Politics of Projects

BODDIE Crunch Mode: Brilding Effective Systems on a Tight Schedule

BOULDIN Agents of Change: Managing the Introduction of Automated Tools

BRILL Butlding Controls into Structured Systems

BRILL Techniques of EDP Project Management: A Book of Readings

CHANG Principles of Visual Programming Systems

COAD AND YOURDON Object-Oriented Analysis

CONNELL AND SHAFER Structured Rapid Prototyping: An Evolutionary Approach to Software
Development |

CONSTANTINE AND YOURDON Structured Design: Fundamentals of 2 Discipline of Computer Program
and Systems Design

DeEMARCO Concise Notes on Software Engineering

DeMARCO Controlling Software Projects: Management. Measurement. and Estimates

DEMARCO Structured Analysis and System Specification

DeSALVO AND LIEBOWITZ Managing Artifical Intelligence and Expert Systems

DICKINSON Developing Structured Systems: A Methodology Using Structured Techniques

FLAVIN Fundamental Concepts in Information Modeling

FOLLMAN Business Applications with Microcomputers: A Guidebook fur Building Your Own System

FRANTZEN AND McEVOY A Game Plan for Systems Development: Strategy and Steps for Designing Your
Own System

INMON Information Engineering for the Practioner: Putting Theory into Practice

KELLER Expert Systems Technology: Development and Application

KELLER The Practice of Structured Analysis: Exploding Myths

KING Creating Effective Software: Computer Program Design Using the Jackson Method

KING Current Practices in Software Development: A Guide to Successful Systems

LIEBOWITZ AND DeSALVO Structuring Expert Systems: Domain. Design, and Development

MARTIN Transaction Processing Facility: A Guide for Application Programmers

MCMENAMIN AND PALMER Essential System Analysis

ORR Structured Systerns Development

PAGE-JONES Practical Guide to Structured Systems Design. 2/E

PETERS Soltware Design: Methods and Techniques

RIPPS An Implementation Guide to Real-Time Programming

RODGERS UNIX Database Management Systems

RUHL The Programmer’s Survival Guide: Career Strategies for Computer Professionals

SCHMITT The OS/2 Programming Environment

SCHUAER AND MELLOR Object-Oriented Systems Analysis: Modeling the World in Data

THOMSETT Peopie and Project Management

TOIGO Disaster Recovery Planning: Managing Risk and Catastrophe in Information Systems

VESELY Strategic Data Management: The Key to Corporate Competitiveness

WARD Systems Development Without Pain: A User's Guide to Modeling Organizational Patterns

WARD AND MELLOR Structured Development for Real-Time Systems, Volumes I, II, and Il

WEAVER Using the Structured Techniques: A Case Study

WEINBERG Structured Analysis

YOURDON Classics in Software Engineering

YOURDON Managing the Structured Techniques. 4/E

YOURDON Managing the System Life Cycle, 2/E

YOURDON Modern Structured Analysis

YOURDON Structured Walkthroughs, 4/E

YOURDON Techniques of Program Structure and Design

YOURDON Writing of the Revolution: Sclected Readings on Software Engineering

e

Preface |

UNIX has made its debut into the Data Processing world in recent years; its impact is
noticeable with the growing number of applications and software packages now available
in the marketplace. Custom applications and packaged systems can now be developed using
a wide variety of tools, in particular Database Management Systems (DBMS).

The users of any UNIX DBMS need to understand the influence of the operating system
on their applications.. We also need to know which limitations the implementation of the
selected DBMS imposes. Application designers and developers need to understand the
tradeoffs involved in selecting one DBMS over another. There is little literawre to date that
clarifies these issues. This book is an atiempt 1o fulfill this nead.

I assume the reader is already interested or involved in the UNIX world, either as a user
or developer of applications. This book does not contain introductory material on the UNIX
operating system. [t assumes you already have some knowledge of data processing and UNIX
concepts. It should be useful reading material for

» Users of an application based on a UNIX DBMS who have a technical interest.

» Designers and developers of an application who are either already using or planning
1o use a UNIX DBMS.

+ Data processing managers who wish to gain some background in the subject.

+ Readers who wish to increase their knowledge in this area and who may have some
knowledge oi other environment: such as MS-DOS.

This book is a practical guide to the UNIX DBMS world. It is based largely on my
experience in selecting DBMSs, implementing and supporting applications based on DBMSs
under UNIX. It does not, therefore, reiterate the well-known theories of databases, nor is it
a substitute for the reference manuals available with each product.

It covers the necessary foundation for a discussion of tradeoffs in implementing an
application, It also discusses the issues faced by the DBMS user community in the UNIX
environment. Where a comparison is possible, the differences between MS-DOS, 0S72, and
UNIX environments are distinguished, so that the reader can see why DBMSs in each envi-
ronment are different.

The book is divided into five major parts. Each part consists of several chapters which
expand on a common theme.

o g xi

it Preface

Part 1: The Theoretical Foundation

This part is a historigal perspective on the theories of database management systems.
The emphasis is on the relational approach, since the majority of UNIX DBMSs are based on
the relational model. We lay the groundwork in this part with the buzzwords common in
this industry so you can follow later, more technical discussions.

Part 2: UNIX and DBMS Applications

Chapters in this part examine how database management systems interact with the
underlying operating system. UNIX has an influence on what facilities a DBMS can provide
and how they are implemented. It also affects the way a developer builds an application.
These chapters should be of greatinterest to application designers, developers, and end-users.
Development managers should like some of the project planning tips included in these
chapters.

Part 3: Four UNIX DBMSs

All readers should find interesting material in this part. We review the facilities pro-
vided by four of the major DBMS products: INFORMIX, INGRES, ORACLE, and UNIFY. We
review these products on the basis of the ground rules established in Part 1 and the application
needs described in Part 2.

Part 4: Seiecting a UNIX DBMS

This part examines the nebulous area of requirements analysis. It contains a lot of
practical hints on how to.go about choosing a product that best meets your application’s
needs in its three chapters. A large number of features does not mean that a DBMS will fulfill
the needs of every application. This part focuses on how to determine which of the DBMS
facilities are important to specific applications.

Part 5: Future Directions

A look at the future developments in the DBMS front. These developments will have
a significant impact on the way future applications will operate.

My intention is not to cover all of the theoretical aspects of DBMS. There are already
several publications covering this subject well. I simply survey the necessary theorencal
concepts to discuss the four DBMS packages described in this book.

Some aspects of the UNIX environment are important in order to understand the options
for implementing an application based on a UNIX DBMS. These aspects are discussed in this
book. However, I do not intend to describe all aspects of the operating system and its utilities
in detail. I only discuss those aspects that interact with DBMSs and applications using them.

There are, of course, many packages available under UNIX at present. The concepts
described in Parts 1, 2, and 4 apply equally to these products. I chose four of the most popular
products: INFORMIX, INGRES, ORACLE, and ACCELL (UNIFY) for detailed review in the book
for several reasons.

Invariably, all four products support the industry standard sQL language. But, some
are better suited for smallto medium database sizes while others are better for large databases.

Preface xiti

Informix has been a widely used product on small UNIX systems: its PC-like user interface-
techniques show great promise in improving the traditional UNIX methods. INGRES has good

productivity improvement tools: it certainly has the widest selection of tools for developers;

some of which could almost be used by nontechnical users. ORACLE and ACCELL both use

the unusial raw disk mechanism of UNIX: necessary for producing good performance with

multivolume databases. The difference is that ACCELL is native to UNIX, while ORACLE

originated elsewhere and was ported to UNIX.

You may question how useful this review of specific versions of products might be,
Don’t worry, the book discusses the fundamental facilities of these products, not their
specifics. Changing these underlying philosophies is more difficult for DBMS vendors than
converting your application from one product to another. So vendors are unlikely to make *
major changes to their base facilities over the next several years. However, a few specific
features we discuss might change: So we list the version of the product to which they apply.
This book provides sufficient grounding in the basics to enable you to make your own
comparisons,

It is almost impossible to discuss every aspect of every system in a single book. This
book attempts to cover most of the important features. I encourage you to refer to the manuals
for each product for details not covered in this book.

My heartfelt thanks to all of the people who have helped me write this book. My
particular thanks to my husband, Paul, who spent countless evenings discussing the ideas
and criticizing the contents of this book. Also, thanks to Martin Heneck, Gerry Boyd, and
Dennis Pierson whose practical suggestions have helped to make this book useful. Thanks
also to R.S. Tare for encouraging me to start this project. My special thanks to the vendors
of the products described in this book, for permission to discuss their respective products,
for supplying me with the information needed, and clarifying many questions. Finally, thanks
tc my editor, Ed Moura, and ¢veryone at Prentice Hall who made the production of this
book possible.

Ulka Rodgers
Annandale, New Jersey

Trademarks

xiv

dBASE is a trademark of Ashton-Tate Corporation.
FOCUS is a trademark of Information Builders Inc.
FourGen is a rademark of Fourgen Software Inc.

'IBM, VM/CMS, DB2, IMS, SQL, SNA, LU6.2, APPC, OS/2 are registered trade-

marks of International Business Machines Corporation.

IDMS is a trademark of Cullinet Software, Inc.

INFFOEXEC is a trademark of UNISYS Corporation.

INFORMIX is a registered trademark of Informix Software Inc.

File-it!, REPORT/DB2, Informix Datasheet Add-In, C-ISAM, INFORMIX-SQL,
RDSQL, INFORMIX-TURBO, INFORMIX-ESQL/C, INFORMIX-
ESQL/COBOL, INFORMIX-4GL are trademarks of Informix Software, Inc.
INGRES is a registered trademark of Relational Technology.
Applications-By-Form, INGRES/APPLICATIONS, INGRES/EQUEL,
INGRES/ESQL. INGRES/FORMS, INGRES/GRAPHICS, INGRES/MENU,
INGRES/NET, INGRES/PCLINK, INGRES/QUERY, INGRES/STAR.
INGRES/REPORTS, Query-By-Forms, Report-By-Forms, Visual-Forms-Editor
(VIFRED), Visual-Graphics-Editor (VIGRAPH) and Visual Programming are
trademarks of Relational Technology.

Lotus 1-2-3 is a trademark of Lotus Development Corporation.

MS-DOS, Microsoft OS/2 is a trademark of Microsoft Corporation.

ORACLE is a registered trademark of Oracle Corporation.

Easy*SQL., SQL*Forms, SQL*Plus, SQL*QMX, SQL*Report, SQL*Report
Writer, PRO*C, SQL*Menu, SQL*Net, SQL*Connect, SQL*Star, SQL*Calc,
SQL*Loader are trademarks of Oracle Corporation.

PROGRESS is a trademark of Progress Software Inc.

SYBASE is a trademark of Sybase, Inc.

TUXEDQO is a trademark of AT&T.

UNIBATCH is a trademark of Unisystems Software Lid.

UNIFY is a registered trademark of Unity Corporation.

ACCELL, Direct HLI, ENTER, PAINT, RPT are trademarks of Unify Corporation.
UNIX is a trademark of AT&T Bell Laboratories.

UQUEUE is a trademark of Unitech Software Inc.

Contents

Preface

Trademarks
Part 1: The Theoretical Foundation

Chapter 1: What Is a DBMS?
1.1 A Historical Perspectlive
1.2 Objectives of a DBMS
1.3 DBMS Models
1.4 The Hierarchical Model
1.5 The Network Model
1.6 The Relational Model
1.7 Entity-Relationship and Other Models
1.8 Conclusions

Chapter 2: Relational Concepts
2.1 Relational Terminology
2.2 What Is Normalization?
2.3 The Normal Forms
2.4 Relational Operations
2.5 Conclusions

Chapter 3: Why Use a DBMS?-
3.1 Data Control
3.2 Utility Packages
3.3 Conclusions

Chapter 4: The SQL Query Language
4.1 Why Is SQL Impoertant?
4.2 The SQL Data Definition Language
4.3 The SQL Retrieval Statement
4.4 The SQL Data Manipulation Language
4.5 Extensions to SQL
4.6 Embedded SQL Interface
4.7 Conclusions

xi

Xiv

—
O WM WL =

1
13
15
16

17
18
19
21
26

29 .

31
31

59

61
62
63
66
72
74
76

-

vi Contents

Part 2: UNIX and DBMS Applications

Chapter & UNIX Facilities and Constraints
5.1 The Process Based Architecture of UNIX
5.2 Data Storage under UNIX
5.3 The UNIX Terminal interface
5.4 Security Control Facilities
5.5 Concurrency Control Tools
5.6 Networking Facilities
5.7 Real-Time Features
5.8 UNIX Tuning
5.9 Application Development Tools
5.10 Conclusions

Chapter 6: Developing a DBMS Application
5.1 Data Storage Options
6.2 Which Access Methods to Use?
6.3 Maintaining the Integrity of Data
6.4 Concurrency Control Issues
.5 Facilities for Building User interfaces
6.6 Deveioping with a Host Language Interface
6.7 Host Language versus Fourth Generation Languages
6.8 Conclusions

Chapter 7: Running a DBMS Appilication
7.1 How Much Interaction with UNIX?
7.2 Users’ Perfcrmance Needs
7.3 Administrative Needs
7.4 Access Security Control
7.5 Adaptability Considerations
7.6 Growth and Portability Considerations
7.7 Concilusions

79

81
82
86
88
90
92
94
96
97
99
100

103
1C4
107
111
112
114
120
122
123

127
128
131
133
138
141
144
144

Part 3: Four UNIX DBMS

Chapter 8. The Informix DBMS
8.1 Introduction
8.2 Packages and Componenis
8.3 Data Control
8.4 Utility Packages
8.5 Integration with UNIX
8.6 Conclusions

Chapter 9: The Ingres DBMS
9.1 Introduction
9.2 Packages and Components
9.3 Data Control
9.4 Utility Packages
9.5 Integration with UNIX
9.6 Conclusions

Chapter 10: The Oracle DBMS
10.1 Introduction
10.2 Packages and Components
10.3 Data Control
10.4 Utility Packages
10.5 Integration with UNIX
10.6 Conclusions

Chapter 11: The ACCELL Application Development System
11.1 Introduction
11.2 Packages and Components
11.3 Data Control
11.4 Utility Packages
11.5 Integration with UNIX
11.6 Conclusions

Contents vii

147

149
149
149 .
155
165
176
177

179
179
179
183
189
200
202

203
203
203
207
214
228
232

233
233
233
238
246
255
257

vili Contents

Part 4: Selecting a DBMS 259
Chapter 12: Determining Your Requirements 261
12.1 Data Volumes 262
12.2 Transaction Volumes 264
12.3 Performance Requirements 266
12.4 Security Requirements 267
12.5 Routine Administration 269
12.6 Enhancements to the Application 269
12.7 Future Portability 271
12.8 Conclusions 272
Chapter 13: Assessing the Tradeoffs , 275
13.1 Which DBMS Facilities are Crucial? 275
13.2 Batch or Interactive Operation? 278
13.3 Development Constraints 280
13.4 Frequency and Ease of Program Modification 281
13.5 Administrative Control 282
13.6 Conclusions 284
Chapter 14: Benchmarking Tips and Traps 285
14.1 Getting Started 285
14.2 UNIX Tools 287
14.3 Designing DBMS Benchmarks 288
14.4 Testing with Realistic /O 292
14.5 Running the Benchmarks 295
14.6 Interpreting Test Results 299

14.7 Conclusions ‘ 302

Contents ix

rart 5: Future Directions 303
Chapter 15: What's Next? 305
15.1 Why Use Multiple Machines? 306
15.2 Distributed Systems 309
15.3 Analyst's Tools 313
15.4 Natural Language Interfaces 315
15.5 Expert Systems 316
15.6 Conclusions 317
Appendix A: DBMS Evaluation Checklist 319
Appendix B: Application Development Checklist 325
Appendix C: For More Information ... 329
Bibliography _ 331

Index 333

Part1

The Theoretical Foundation

Despite the title, this part is actually only an overview of the theories underlying DBMS
technology. It aims to introduce you to the terminology prevalent in this industrv, rather
than to provide a rigorous discourse on the technicalities. For this reason, we merely skim
the swrface of the theories in an informal manner.

One of the primary objectives of the following chapters is to provide sufficient
background so you can follow the later, more technical parts of the book. We do,
however, cover some very important ground on what DBMS products do for your
development methods and why you would want to use them. Chapter 1 discusses some
of the problems developers face when using non-DBMS data storage methods.

Chapter 2 covers the basic terminology used in the relational database management
systems and some of the useful data design technigues. The remaining two chapters con-
centrate on describing the types of facilities found in commercial products. The purpose is
to establish some ground rules on how UNIX affects these facilities, which facilities are
offered by the products discussed in this book, and probable directions for future devel-
opments.

What Is a DBMS?

Everyone knows what a database management system is, right? But what is the dif-
ferenice between a database and a database management system (DBMS)? We have all heard
these buzzwords for quite some time; some of us even use them every day. We don’t always
know what differentiates themn from each other. That is what this chapter is all about,

We hear that we must use these DBMS products, that they are the way of the future.
But it is rather difficult to judge what they really do for you. Over the next few sections, we
will take a look at where these ideas came from and some of the buzzwords common in the
industry. We will also discuss what these products mean to your company no matter which
business you are in.

Although the book itself is primarily aimed at the UNIX environment, most of the
discussions in this chapter do not relate to any specific operating system. Afier all, UNIX
was not commercially available until after these principles had matured.

1.1 A Historical Perspective

We have had databases ever since man started keeping written records. Whether carved
into stone siabs, written on paper and stored in a file cabinet, or stored electronically in a
computer, a database is simply a store of data. Of course, in the early days of computing
and even today, we used the term files. Because of the limitations of the early computer
hardware, most of these files were stored on cards and paper tapes. With the advent of
magnetic storage media, we started using magnetic tapes, and finally keeping these files
on-line on disks.

The buzzword database appeared at about the time we started keeping more and more
of our files on-line. It refers to a collection of files that are related in some way. For example,
we speak of the accounting database, the marketing database, or a personnel database. Each
database might consist of several files such as general ledger, vendor, and customer files in
an accounting database,

4 Chapler 1: What is a DBMS?

So, if we have had databases for such a long time and managed to use them to our
advantage. why do we need a DBMS? The answer lies in how changes in our methods of
software development over the years have improved our development productivity. We need
toexamine how systems are built without a DBMS and why it helps to improve such systems
development.

The earliest software was written in machine code using the basic computer terms of
I'sand 0's. Then, we developed assembler languages to make it easier to write this software.
We call the era of machine code programs as first generation languages, and assembler as
second generation languages. With assembler languages we could write software and make
it work much more quickly than we could when writing in machine code. In other words,
we increased productivity of the software developers.

Then came high level languages such as COBOL. FORTRAN. and later many others. We
call these the third generation of programming languages. Again, we increased development
productivity by an'order of magnitude because these languages were even easier to program
in than assembler. Besides, many more people could learn and effectively use these lan-
guages than those who could make sense out of assembler languages. A DBMS improves the
development productivity yet again by taking these developments to the next logical step.
Its fourth generation languages provide a higher level of development interface than the
third generation programming languages like COBOL.

A DBMS provides many tools to speedily develop screen interfaces such as menus and
interactive forms which require several pages of third generation programming language
code. By providing standard tools, they not only reduce repetitive code in programs but also
enforce consistency in the user interface. A DBMS offers you an easier and faster way of
developing typical forms-based interactive programs. Similarly, it offers report generators,
50 you can produce a typical report with a few commands, not pages and pages of code in
a language like COBOL. These tools improve productivity in the same way as languages like
COBOL improved it over assembler languages: by giving you a higher level of development
interface.

A DBMS changes your views on accessing data with its end-user query tools. Non-
technical people could use such ad hoc query tools with a little training. You still need
programimers to write programs for prettily laid out reports or those that are used frequendy.
But, if you need the data now, and are not fussy about the layout, ad hoc query tools let you
do the job yourself!

While there were improvements in development languages, operating systems also
improved to relieve us from developing code to access storage and peripheral devices.
dperating systems manage hardware devices and the running of programs. In the context
of data management, what these improvements meant was that we no longer had to worry
about which disk block a particular file started and ended. We could refer to files by a
meaningful name, and specify a record in the file as being a specific size. The file man-
" agement portion of the operating system translates these file names and record specifications
into blocks on disks.

