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Preface

The theory of electric current flow in excitable cells has developed ex-
tensively since Lord Kelvin first presented the equations for cable trans-
mission a century ago. This development has been particularly rapid during
the last 30 years or so, following the first detailed experimental applications of
Kelvin’s equations to nerve and muscle fibres. As a result, cable theory now
plays a central role in many areas of electrophysiology, so that biologists
find themselves using mathematical methods of analysis involving techniques
considerably more advanced than those with which they are familiar from
their undergraduate training. The first aim of this book, therefore, is to give a
systematic and explanatory account of the basic mathematical theory that we
hope will be of use to research workers in the field as well as in university
courses in electrophysiology and in biological mathematics.

When we started writing several years ago this was the sole aim of our
work. However, in attempting to write such an account, we encountered a
number of areas in which the relevant theory required further development,
not only to enable a reasonably systematic account to be given but also to
allow us to use the explanatory device of looking at particular problems from
different aspects. Where possible, we have attempted the development our-
selves, and this second aim has grown as the book was written. As a result,
much of the material of the book is new, as a glance at our illustrations will
show. If we need to apologize for writing a rather longer and more advanced
book than our original aim required, our justification is simply that, in our
view, the subject requires such a book. The mathematics of excitation and
conduction theory is much more complex, and the experimental work on
which it is based is considerably more extensive, than when Bernard Katz
wrote his classic review of excitation (Electric excitation of nerve) in 1939.
Our subject is essentially the same as his, but its content has been greatly
transformed and expanded, and we have found it impossible to restrict
ourselves to the 100 or so pages that sufficed 35 years ago.

The year 1939 saw the first results of the intracellular recording techniques
that were to completely revolutionize the subject after World War II. Katz’s
book therefore appeared at an ideal moment of time. He was able to review
the development of excitation theory (including some of the valuable insights
developed during the 1930s) before he and others became so successfully
involved in using the new techniques. A watershed had been passed, and for
two decades the insights of the 1930s must have paled before the immense
power of being able to directly record the events about which the physiologists
of the 1930s could only theorize.
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We have now reached a somewhat analogous stage of development,
although the events about which we now theorize (but wish we could directly
record) are molecular rather than cellular. Furthermore, as the new intra-
cellular methods have been applied to progressively more intractable problems
in nerve and muscle physiology, so the need to use fairly elaborate, and more
highly theoretical, models has returned. Moreover, it is not surprising that
some of the insights of the 1930s (for example, Rushton’s work on initiation
and propagation of the impulse) are proving more useful again. The same
problem has returned: even with the new techniques we cannot always record
directly all the events we may wish to, and the need to use simplified models
of the excitation process itself (not unlike those used in the 1930s) becomes
greater when more complex physiological systems are studied. To some
extent then the wheel has turned fully round. As a result, we have felt the need
to relate some of the older insights to the modern theory of excitation.

We are keenly aware of the fact that the aims of introduction and de-
velopment co-exist uneasily in the writing of a book. The result is a hybrid.
Nonetheless, we have ensured that the introductory and explanatory core is
still present as a substantial and identifiable body, although its parts are
necessarily interspersed with more advanced development. For the guidance
of students interested in our first aim we have indicated in Chapter 1 where
the introductory parts are to be found. So far as our second aim is concerned,
we cannot say that we are fully satisfied. The developments we have attempted
are primarily analytical, largely because we expect the insights gained to be
more general than those to be obtained from numerical computer models.
However, we have not succeeded in obtaining useful analytical solutions for
more than a fraction of the problems that interest electrophysiologists.
We present our work as a stimulus to others as much as a record of our own
explorations.

Oxford and Yale, J.J.B.
September 1974
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transmembrane potential expressed as potential of intracellular
fluid with respect to that of extracellular fluid (mV).

resting value of £, (mV).

transmembrane potential expressed as deviation of intracellular
potential from resting potential, ¥ = E,,—E, (mV).

intracellular resistivity (k2 cm).

membrane resistance (k{2 cm?).

membrane capacitance (uF cm™2).

membrane impedance (k{2 cm?).

membrane reactance (kQ2 cm?).

frequency (Hz).

radial frequency = 2= f (rad).

membrane ionic (resistance) current (uA cm™2).

membrane capacity current (uA cm™2).

total membrane current, usually I;+17, (4A cm—2).

applied current (1A).

fibre radius (one-dimensional theory) (cm).

preparation thickness (two-dimensional theory) (cm).

membrane ionic current per unit length of fibre (= 2wal)
(uA cm™).

membrane capacity current per unit length fibre (= 2wal}).
(uA cm™?).

membrane current per unit length fibre (= 27al)) (A cm™).
membrane resistance per unit length fibre (= R,,/27a) (kQ cm).
intracellular resistance to axial flow of current along fibre (= R/
7a?) (kQ cm™?).

membrane capacitance per unit length fibre (= 27aCp,)(uF cm™).
membrane time constant (= R,,C,) (ms).

fibre space constant (= \/(Rua/2R;) = \/(rw/rs)) (cm).

distance along fibre (unidimensional theory) (cm).

= x/A.

distance from point electrode (two-dimensional theory) (cm).
two-dimensional space constant (see Chapter 5).

= r[d,

time (ms).

= t|/Tp.

intracellular axial current (zA).

input resistance (recorded potential/applied current) ().

charge (nC).
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Gm membrane chord conductance (ms cm—2).

Zm membrane chord conductance in unit length of fibre (ms cm™).
0 conduction velocity (ms™1).

K = 2R,02C/a (ms™ or s7).

V, 1, etc. Laplace transforms of ¥, I, etc.

s Laplace transform variable.
/ length of fibre.
L /A,

Other symbols are defined as they are introduced.
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1. Introductory remarks

THE evolution of electrically excitable membranes in living systems was an
essential step in the development of those forms of life which display the com-
plex kinds of behaviour which we associate with the possession of a nervous
system. The chemical basis of this excitability is still largely unknown.
However, the physical aspects are now very well understood and the theory of
current flow in excitable cells is well developed. Unfortunately, many of the
important results are still to be found only in the original papers or in fairly
specialist reviews and, although some excellent elementary textbooks now
exist, there is no systematic account of the more mathematical aspects. We
hope that this book will fill this gap.

Virtually all living cells maintain an electrical potential difference between
their interiors and the environment, and this potential is one of the factors
determining the energy barriers encountered by charged substances entering
or leaving the cell. The special characteristic of excitable cells is that the
potential may change in response to variations in the chemical environment
or in response to current flow. These potential changes (receptor potentials,
synaptic potentials, pacemaker potentials, and action potentials) underly
the ability of nervous systems to process and to transmit information. They
also serve as the triggers of mechanical activity in the case of effector cells
such as muscles.

The transmission of information over long distances is carried out by thin
projections of nerve cells called nerve axons. Moreover, for anatomical
reasons, muscle cells are also often arranged in long fibres. Thus two of the
most important kinds of excitable cell have a geometry resembling that of an
electric cable. The theory of current flow in electric cables, initially developed
for submarine cables by Lord Kelvin (1855, 1856, 1872), was first used in work
related to excitable cells towards the end of the nineteenth century by Weber
(1873, 1884), Cremer (1899, 1909), and Hermann (1879, 1899, 1905). One of
the most important results of this early work was Hermann’s suggestion that
current flow of the kind described by cable theory may be adequate to main-
tain nerve impulse propagation. Since then, the theory has frequently been
used in the study of nerve and muscle, particularly in work on the responses
to electrical stimuli which are small enough to neglect the gross nonlinearities
which appear in response to strong stimuli. The theory has also been success-
fully applied to the mechanism of impulse propagation. This work developed
rapidly in the 1930s and 1940s (see Rashevsky 1931; Rushton, 1934, 1937;
Monnier 1934; Cole and Curtis 1936, 1939, 1941; Rosenberg 19374, b;
Hodgkin 1937; Cole and Hodgkin 1939; Katz 1939; Offner, Weinberg, and
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Young 1940; Weinberg, 1941; Hodgkin and Rushton 1946; Lorente de N6
1947) so that by 1946, when Hodgkin and Rushton published their experi-
mental and theoretical analysis of the subthreshold responses of nerve axons
to locally applied currents, the nature of the purely passive (‘electrotonic’)
flow of current in nerve axons was largely clarified and some important clues
to the nature of the nonlinear properties had emerged. More recently, the
most exciting developments in this field have concerned the analysis of the
nonlinear properties of excitable cells using the voltage control (‘voltage-
clamp’) technique introduced by Cole and Marmont in 1949. The theoretical
interpretation of this work has been based largely on the semi-empirical
equations, given by Hodgkin and Huxley in 1952, for describing the time and
voltage dependence of the membrane current. However, these developments
have continued to require the use of cable theory and of extensions to it that
were designed to deal with nonlinear systems and with more complex geom-
etries. The result has been a steady but considerable development of the
theory, the importance of which does not depend directly on any particular
theory concerning the mechanism of the membrane nonlinearities. Moreover,
since Fatt and Katz’s (1951) quantitative analysis of the end-plate potential,
the theory has also been used in the study of synaptic mechanisms. Therefore
it has become an important part of many branches of biophysics and neuro-
physiology, and it may be useful to graduate students and research workers
in these fields to have a more comprehensive introduction to the theory than
is at present available.

In this book we attempt to give a systematic account of the theory and its
applications. Some of the results are well known and may be found in the
physiological literature or in some of the standard mathematical texts
(e.g. Carslaw and Jaeger 1959; Jaeger 1951 ; Luikov 1968). Some of the more
recent work may not be so well known. Moreover, the mathematical methods
and the notation used have not always been uniform and, largely because the
theory has been developed for particular applications, some results of more
general importance have not always been obtained or given the attention they
may deserve. In view of this situation, we give fairly complete derivations for
some of the important and widely-used resuits, together with references to
sources containing the original derivations. Where no references are given we
believe the results to be new, but we apologize if we have inadvertently
neglected any previous work of importance.

Wherever possible, we have tried to be simple and explanatory rather than
complete and general. Some of the consequences of this policy are worth
mentioning here, since we may in this way warn our more sophisticated
readers where they may expect to find limitations which are largely of our own
choosing. First, the derivations given are not always the most general since
we believe that most biologists find particular derivations easier to follow.
Second, we do not attempt to give a complete review of the physiological
applications of importance, but some examples of applications are referred



Introductory remarks 3

to in order to illustrate the theory. Third, although most of the early develop-
ment of cable theory was directed towards work with extracellular electrodes,
more recent work has often used intracellular electrodes. Since, in many
cases, this allows the equations to be simplified, we use this simplification
wherever possible. In keeping with this approach, the theory of extracellular
fields (see Lorente de N6 1947; Plonsey 1964; Clark and Plonsey 1966, 1968;
Rall and Shepherd 1968; Rosenfalck 1969; Nicholson and Llinas 1971) is
omitted. We also omit the theory of three dimensional fields in the vicinity
of current sources (see Eisenberg and Johnson 1970).

It may be helpful to readers to have some guidance on how the book might
best be used. First, it should be emphasized that we have not written a
general introduction to cellular electrophysiology. On the contrary, some
familiarity with the subject is assumed, and readers who have no previous
knowledge would be well advised to first read an introductory account such as
Katz’s Nerve, muscle, and synapse (1966) or Aidley’s The physiology of
excitable cells (1971). Some parts of the present work will then be found fairly
easy to follow. In particular, Chapter 2, many sections of Chapter 3, and
Chapters 8, 9, 10, and most of 11 are intended as introductions to the basic
principles of linear and nonlinear cable and excitation theory, and some parts
of each of these chapters will be found to be relatively elementary. It should
be noted that the introductory sections of the book do not necessarily appear
at its beginning. We have deliberately deferred some of the introductory
material to later chapters dealing with nonlinear cable theory since it is in
these chapters that the appropriate applications occur.

Chapters 6 and 7 are concerned with particular applications of cable theory
to problems in muscle excitation and the theory of nerve cells. These chapters
are written largely as reviews of the present state of the field, and they may well
become out of date more quickly than other chapters. We feel, however, that
these chapters will give a useful indication of the way in which the theory is
used in problems of current interest, and we hope that they will also serve as
introductions to these two fields for those who do not have the time to
adequately study the complex, and sometimes rather inaccessible, literature.
Similarly, Chapter 11 is, to a considerable extent, a survey of the analysis of
repetitive firing; as such it is likely to become incomplete as new work takes
the analysis further.

Chapters 4, 5, and 12 contain fairly advanced or specialist material, and we
suggest that they should be omitted on a first reading. These chapters should
prove more useful to those already familiar with the basic principles and to
those who need equations for particular problems.

Finally, it will be obvious on perusing the book that some parts assume a
fair degree of mathematical knowledge. However, we hope that this will not
deter non-mathematical physiologists. In the introductory chapters mentioned
above we have tried to explain the derivations in fairly easy stages and, if the
reader confines himself to these chapters initially, he should find that little



