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PREFACE

For the last fourteen years a course in mathematical
methods in physics has been taught, by the authors and by
others, at the California Institute of Technology. It is
intended primarily for first-year physics graduatestudents;
in recent years most senior physics undergraduates, as well
as graduate stydents from other departments, have been
taking it. This book has evolved from the notes which
have been used in this course.

We make little effort to teach physics in this text; the
emphasis is on presenting mathematical techniques which
have proved to be useful in analyzing problems in physics.
We assume that the student has been exposed to the
standard undergraduate physics curriculum: mechanics,
electricity and magnetism, introductory quantum mechan-
ics, etc., and that we are free to select examples from
such areas.

In short, this is a book about mathematics, for physicists.
Both motivation and standards are drawn from physics.
That is, the choice of subjects is dictated by their usefulness
in physics, and the level of rigor is intended to reflect
current practice in theoretical physics.

It is assumed that the student has become acquainted
with the following mathematical subjects:

1. Simultaneous linear equations and determinants

2. Vector analysis, including differential operations
in curvilinear coordinates

3. Elementary differential equations

4. Complex variables, through Cauchy’s theorem
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However, these should not be considered as strict prerequisites. On the
one hand, it will often profit the student to have had more background, and,
on the other hand, it should not be too difficult for a student lacking familiarity
with one of the above subjects to remedy the defect by extra work and/or out-
side reading. In fact, the subject of differential equations is discussed in
the first chapter, partly to begin on familiar ground, and partly in order to
treat some topics not normally covered in an elementay course in the subject.

A considerable variation generally exists in the amount of preparation
different students have in the theory of functions of a complex variable. For
this reason, we usually give a rapid review of the subject before studying
contour integration (Chapter 3). Material for such a review is presented in
the Appendix. Also, there are some excellent and reasonably brief mathe-
matical books on the subject for the student unfamiliar with this material,

A considerable number of problems are included at the end of each chapter
in this book. These form an important part of the course for which this book
is designed. The emphasis throughout is on understanding by means of
examples.

A few remarks may be made about some more or less unconventional
aspects of the book. In the first place, the material which is presented does
not necessarily flow- in a smooth, logical pattern. Occasionally a new subject
is introduced without the student’s having been carefully prepared for the
blow. This occurs, not necessarily through the irrationality or irascibility of
the authors, but because that is the way physics is. Students in theoretical
physics often need considerable persuasion before they will plunge into the
middle of an unfamiliar subject; this course is intended to give practice and
confidence in dealing with problems for which the student’s preparation is
incomplete.

A related point is that there is considerable deliberate nonuniformity in
the depth of presentation. Some subjects are skimmed, while very detailed
applications are worked out in other areas. If the course is to give practice in
doing physics, the student must be given a chance to gain confidence in his
ability to do detailed calculations. On the other hand, this is a text, not a
reference work, and the material is intended to be fully covered in a year.
It is therefore not possible to go into everything as deeply as one might like.

Several acknowledgments are in order. The course from which this text
evolved was originally based on lectures by Professor R. P. Feynman at
Cornell University. Much of Chapter 16 grew out of fruitful conversations
with Dr. Sidney Coleman. The authors are grateful to Mrs. Julie Curcio for
rapid, accurate, and remarkably neat typing through several revisions.

JON MATHEWS
R. L. WALKER
Pasadena, California
May 1964
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ONE

Ordinary Differential
Equations

We begin this chapter with a brief review of some of
the methods for obtaining solutions of an ordinary
differential equation in closed form. Solutions in
the form of power series are discussed in Section 1-2,
and some methods for abtaining approximate
solutions are treated in Sections 1-3 and 1-4.

The wuse of integral transforms in solving
differential equations is discussed later, in Chapter 4.
Applications of Green’s function and eigenfunction
methods are treated in Chapter 9, and numerical
methods are described in Chapter 13.

1-1 SOLUTION IN CLOSED FORM

The order and degree of a differential equation refer to the derivative
of highest order after the equation has been rationalized. Thus, the

% A/@+:c2=0
dx3+x d—J; Y

is of third order and second degree, since when it is rationalized it
contains the term (d3y/dx®)2.

1



2 Ordinary Differential Equations

We first recall some methods which apply particularly to first-order
equations. If the equation can be written in the form

A(x) dx + B(y) dy = 0 (1-1)

we say the equation is separable; the solution is found immediately by
integrating.

EXAMPLE
dy A/1—_:/2_
& NI =0 (1-2)
dy dx
Vi-gtvice™

sin'y + sin"1x = C

0

or, taking the sine of both sides,

VI -2+ yV1 - x® =sinC = C’

More generally, it may be possible to integrate immediately an
equation of the form

A(x,y) dx + B(x,9) dy = 0 (1-3)

If the left side of (1-3) is the differential du of some function u(x, y), then
we can integrate and obtain the solution

u(xy) =C

Such an equation is said to be exact. A necessary and sufficient condition
that Eq. (1-3) be exact is

04 ©oB
%~ -9
EXAMPLE
®
(*x+y)de + xdy =0 (1-5)
A=x+y B=x
o4 _ 2B _
oy ox.

The solution is
xy + 3x2=C
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Sometimes we can find a function A(x, y), such that
(A4 dx + B dy)

is an exact differential, although A dx + B dy may not have been. We
call such a function A an infegrating factor. One can show that such
factors always exist (for a first-order equation), but there is no general
way of finding them.

Consider the general linear first-order equation

Yy Fx)y = g (1-6)

Let us try to find an integrating factor A(x). That is,

Ax)[dy + f(x)y dx] = A(x)g(x) dx
is to be exact. The right side is all right, and our criterion (1-4) that the
left side be exact is
dA(x)
) s

This equation is separable, and its solution is

Ax) = exp [[f(x) dx] (1-7)

This is the integrating factor we were looking for.

EXAMPLE

The integrating factor is exp { f [(1 + x)/x] dx} = xé*

oy (] -+

Now our equation is exact; integrating both sides gives
xey = [ dx = 3¥ + C
e  C

y=2—x+;e

-z

One can often simplify a differential equation by making a judicious
change of variable. For example, the differential equation

y =flax + by + ¢) (1-9)



4 Ordinary Differential Equations

becomes separable if one introduces the new dependent variable,
v=ax+ by +¢
As another example, the so-called Bernoulli equation
¥+ S0y = gy (1-10)

becomes linear if one sets » = y'~" (This substitution becomes
“obvious” if the equation is first divided by y*.)

A function f(x,y,...) in any number of variables is said to be
homogeneous of degree r in these variables if

Sflax,ay,...) = a'f(x,y,...)
A first-order differential equation
A(x,y) dx + B(x,y)dy = 0 (1-11)
is said to be homogeneous if 4 and B are homogeneous functions of the

same degree. The substitution y = vx makes the homogeneous equation
(1-11) separable.

EXAMPLE

yde + 2Vxy — x)dy =0 (1-12)
y=ox dy=vde+ xdv

oxdx + (2xVo — x)(vdx + xdv) =0
2032 dx 4+ (2Vo — 1)xdp = 0

This equation is clearly separable and its solution is trivial.

Note that this approach is related to dimensional arguments familiar
from physics. A homogeneous function is simply a dimensionally con-
sistent function, if x,y,... are all assigned the same dimension (for
example, length). The variable » = y/x is then a ‘“‘dimensionless”
variable,

This suggests a generalization of the idea of homogeneity. Suppose
that the equation

Adc + Bdy =0

is dimensionally consistent when the dimensionality of y is some power m
of the dimensionality of x. That is, suppose

A(ax, a™y) = a"A(x,y)

(1-13)
B(ax,a™y) = a""™*1B(x,y)
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Such equations are said to be isobaric. The substitution y = vx™ reduces
the equation to a separable one.

EXAMPLE

xy*(Bydx + xdy) — (Qydx — xdy) =0 (1-14)
Let us test to see if this is isobaric. Give x a “weight” 1 and y a

weight m. The first term has weight 3m + 2, and the second has weight
m + 1. Therefore, the equation is isobaric with weight m = —14.

This suggests introducing the “dimensionless” variable » = yVx.
To avoid fractional powers, we instead let

2 dx=‘f’_’_2_”f_y

veyE A= g vy

Equation (1-14) reduces to

(v — 2)ydo + 50(1 ~ v)dy =0
which is separable.

An equation of the form
(ax + by +c)dec + (ex + fy + g)dy =0 (1-15)
where g, . . ., g are constants, may be made homogeneous by a substitution
x=X+a y=Y+8
where « and B are suitably chosen constants [provided af # be;ifaf = be,
Eq. (1-15) is even more trivial].
An equation of the form
y—x =1 (1-16)
is known as a Clairaut equation. 'To solve it, differentiate both sides with
respect to x. The result is

yIfy) +x=0
We thus have two possibilities. If we sety” = 0,y = ax + b, and sub-
stitution back into the original equation (1-16) gives b = f(a). Thus
y = ax + f(a) is the general solution. However, we also have the
possibility
fy)+x=0

Eliminating y’ between this equation and the original differential equa-
tion (1-16), we obtain a solution with no arbitrary constants. This is
known as a singular solution.
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EXAMPLE
y=xy + (y)? (1-17)
This is a Clairaut equation with general solution
y=cx + c?
However, we must also consider the possibility 2y + x = 0. This gives
' 22+ 4y =0
This singular solution is an envelgpe of the family of curves given by the

general solution, as shown in Figure 1-1. The dotted parabola is the

singular solution, and the straight lines tangent to the parabola are
the general solution,

There are various other types of singular solutions, but we shall not

go into them here. See COHEN for a good discussion and some
references.

Next we review some methods which are useful for higher-order
differential equations. An important type is the linear equation with

constant coefficients:
3™ + 8y 1YY 4+ 4y + aoy = f(%) (1-18)

If f(x) = 0, the equation is komogeneous; otherwise it is inkomogeneous.
Note that, if a linear equation is homogeneous, the sum of two solutions is
also a solution, whereas this is not true if the equation is inhomogeneous.

Figure 1-1 Solutions of the differential equation (1-17) and their envelope
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The general solution of an inhomogeneous equation is the sum of the
general solution of the corresponding homogeneous equation (the so-
called complementary function) and any solution of the inhomogeneous
equation (the so-called particular integral). This is in fact true for any
linear differential equation, whether or not the coefficients are constants.

Solutions of the homogeneous equation [(1-18) with f(x) = 0]
generally have the form

y=ev
Substitution into the homogeneous equation gives
am® + ap_ym*" -+ a,=0
If the n roots are my, my, . - ., m, the complementary function is
CL€™F + o+ Cpe™ (¢; are arbitrary constants)

Suppose two roots are the same, m; = my. Then we have only
n — 1 solutions, and we need another. Imagine a limiting procedure in
which m, approaches m;. Then

et — e™m*

“mg — my
is a solution, and, as m, becomes m;, this solution becomes

xe™m*
This is our additional solution. If three roots are equal, m; = my = m,,
then the three solutions are
e’ xe™= x%e™*
and so on.
A particular integral is generally harder to find. If f(x) has only a

finite number of linearly independent derivatives, that is, is a linear
combination of terms of the form x", ¢#%, sin kx, cos kx, or, more generally,

™ cosax  A"e™ sin ax
then the method of undetermined coefficients is quite straightforward. Take
for y(x) a linear combination of f(x) and its independent derivatives and

determine the coefficients by requiring that y(x) obey the differential
equation.

EXAMPLE

Y+ + = (1-19)
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Complementary function:

m?®+3m+2=0

m= -1, -2

Y= e %+ cpe” %
Particular integral: Tryy = Ae*. Substituting into the differential
equation (1-19) gives

64 =1 A=1
Thus, the general solution is

Y =3+ 167% 4 ™%

If f(x), or a term in f(x), is also part of the complementary function,
the particular integral may contain this term and its derivatives multiplied
by some power of x. To see how this works, solve the above example
(1-19) with the right-hand side, ¢*, replaced by ¢~2.

There are several formal devices for obtaining particular integrals.
If D means d/dx, then we can write our equation (1-18) as

(D = m)(D - mg) (D - mp)y = f(x) (1-20)
A formal solution of (1-20) is
y = S(®)
(D —m)---(D — my)
or, expanding by partial fraction techniques,
IPINAC)) (%)
y-AlD—_——rn—1+--'+An5—_—”—‘n (1-21)

What does f(x)/(D — m) mean? It is the solution of (D. — m)y = f(x),
which is a first-order linear equation whose solution is trivial [see (1-6)].

Alternatively, we can just peel off the factors in (1-20) one at a time.
That is,

(D - m)(D = mg)--(D - my = FE (2

We evaluate the right side, divide by D — m,, evaluate again, and so on.

Finally, we consider the very important method known as variation of
parameters for obtaining a particular integral. This method has the
useful feature of applying equally well to linear equations with noncon-
stant coefficients. Before giving a general discussion of the method and
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applying it to an example, we shall digress briefly on the subject of
osculating parameters. ‘

Suppose we are given two linearly independent functions y, (x) and
ya(x). By means of these we can define the two-parameter family of
functions

6191(%) + ¢2y2(*) (1-23)
Now consider some arbitrary function y(x). Can we represent it by an
appropriate choice of ¢; and ¢ in (1-23)?  Clearly, the answer in general
is no. Let us try the more modest approach of approximating y(x) in the
neighborhood of some fixed point x = #, by a curve of the family (1-23).
Since there are two parameters at our disposal, a natural choice is to fit
the value y(x,) and slope y' (x,) exactly. That is, ¢, and ¢, are determined
from the two simultaneous equations

y(x0) = c191(%0) + 2y2(xo)
Y (%) = 11(%0) + caya(%o)
The ¢, and ¢, obtained in this way vary from point to point (that is, as x,
varies) along the curve y(x). They are called osculating parameters
because the curve they determine fits the curve y(x) as closely as possible
at the point in question.
One can, of course, generalize to an arbitrary number N of functions
y, and parameters ¢;, One chooses the ¢ to reproduce the function y(x)
and its first N — 1 derivatives at the point x,.
We now return to the problem at hand, solving linear differential
equations. For simplicity, we shall restrict ourselves to second-order
equations. Consider the inhomogeneous equation

PRy + 9(®)y + r(x)y = s(x) (1-25)
and suppose we know the complementary function to be
6191(%) + caya(x)
Let us seek a solution of (1-25) of the form
y = w(*)9.(x) + ua(x)y2(x) (1-26)

where the (x) are functions to be determined. In order to substitute
(1-26) into (1-25), we must evaluate y’ and y". From (1-26),

Y o= wyi + ugys + Y + Uy (1-27)
Before going on to y”", we observe that it would be convenient to impose
the condition that the sum of the last two terms in (1-27) vanish, that is,

(1-24)

uyy + uzys = 0 (1-28)



