Spectral Techniques
in Digital Logic
S. L. HURST

D. M. MILLER

l. C. MUZIO




Spectral Techniques
in Digital Logic

S. L. HURST

University of Bath
Bath, England

D. M. MILLER

University of Manitoba
Winnipeg, Manitoba

J. C. MUZIO

University of Victoria
Victoria, British Columbia

1985

ACADEMIC PRESS
(Harcourt Brace Jovanovich, Pubh‘\ws)

London Orlando San Diego NOWereIT
Toronto Montreal Sydney Tokyo



CoPYRIGHT © 1985, BY ACADEMIC PRESS INC. (LONDON) LTD.
ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC

OR MECHANICAL. INCLUDING PHOTOCOPY. RECORDING, OR

ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE FUBLISHER

ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road
LONDON NW} 7DX

United States Edition published by
ACADEMIC PRESS, INC.
Orlando, Florida 32887

British Library Cataloguing in Publication Data

Hurst. S. L.
Spectral techniques in digital togic.
1. Flectronic digital computers 2. Logic design
I. Title . Miller. D. M. Il Muzio. 1. C,
621.38197SK2 TK7888.3

Library of Congress Cataloging in Pubhication Data

Hurst, S L. (Stanley Leonard)
Spectral techniques in digital logic.

Bibliography: p.
Includes index.

1. Logicdesign. 1. Miller, D. M. [1.- Muzio, Jon G
. Title.

TK7868 L6H88 1985  621.3819°5835 ~.83-83427,
ISBN 0--12-362680-3 (alk. paper) ?

PRINKED IN THE UNITED STATES OF AMERICA

85 86 87 88 9876541321

n



Preface

During the past two decades a new field of digital logic theory has been
born and its boundaries continuously extended. Two motives for this work
may be discerned: first, the purely academic, one of applying existing mathe-
matical techniques to pastures new, and second, the increasing appreciation
of the limitations of existing algebraic and geometric methods in handling
digital data for logic network design purposes.

‘Digital logic design is a pecuhar discipline in that the logic design for a
. given requirement, which may be in total a very large system, is frequently
made without the use of any sophisticated design procedure. Very great
sophistication, however, may be present in the logical verification of the
complete assembly and in its translation into a microelectronic realisation,
but the basic logic formulation may remain largely a hand-assembled syn-
thesis, albeit aided by the experience of the logic designer who may be very
proficient in intuitively recognizing patterns or symmetries in the network
being designed. Indeed, many industrial designers will state that this is a
perfectly acceptable situation, but this may be because of more demanding
pressures froir the existing areas of sophistication. Equally, the increasing
capabilities. of LSI and VLSI fabrication have so far kept pace with the
designers’ need and no strong pressure for “‘better” design techmques has
arisen.

However, the new ﬁeld of digital logic theory represents a modern ap-
proach to expressing conventional digital data, one which can provide
various insights into the structure of the data which are absent from classical
Boolean algebra and truth-table formats. The pioneering work, particularly
. that of Karpovsky, originally in Russia, and Lechner, in the United States
of America, forms the basis of this approach. Others have contributed and
amplified the basic concepts and have translated the underlying mathe-
matics: inito engineering tools which may be more acceptable to a digital
logic designer.

The first chapters of this book will attempt to introduce the underlying
theory of this area, that of orthogonal transforms and resulting spectral
data. We assume that the reader will be conversant with conventional digital
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X Preface

logic theory, such as is contained in any graduate textbook. Subsequent
chapters will be concerned with the application of spectral data to Boolean
function classification, logic network synthesis, fault diagnosis, and other
aspects relevant to digital logic design. While the underlying theory of this
area is applicable to any-valued logic, and not exclusively to the binary
case, we will generally confine our discussions herewith to two-valued digital
networks. Nevertheless, it is particularly significant that should future
techriology adopt a higher-valued logic, say quaternary, then the basic
design techniques such as those discussed here will be applicable for such
developments.

We hope that this book will be of interest to all working in computer
engineering and digital system design, as well as to academic and research
establishments. Our final hope is that it may maintain and increase intefest

in this area, leading to yet further deve!opments whnch must, surely be
forthcommg

S.LH.
D.MM
J.CM.
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List of Symbols

Integer threshold-gate input weight

Entries of B (see below)

Integer threshold-gate output discrimination (threshold) value

Parameter used in fault detection procedures only

Function of all the input variables

Decompositions of a function

Independent input variable subscripts, i = 1 ton

Row subscripts of a matrix, j =010 2" ~ |

Column subscripts of a matrix, k = 0t0 2" — |

Minterm identification with decimal notation subscript, see tabulation, also used in
Fig. 3.8 :

m Xn xn-l XZ Xy
me 6 0 0 0
m, 0 0 0 1
m, 0 o 1 -0
mpoy |11 o 1

Note that x, = most-significant digit and x, = least-significant digit; see also Append.
" A, Section 1.

Number of independent gt input variables

Number of multi-valyd logic levels, p = 2, p = 2 in binary

- Entries of R

Entries of S

Entries of T, or as a superscript the transpose of a vector or matrix
Sub-function identifier

Independent input variable x;, i = 1 to n, x, least significant
Entries of Y, except locally in Figs. 3.1 and 3.8

Entries of Z

{xgy .0 x0}

Sxy,.000x)

Vector of n + 1 modified Chow parameters

2l

Truth-table column vector for function f(x), entries €0, 1), in truth-table order m,.
my, ..., M. unless otherwise stated
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Xiv List of symbols

Y Truth-table columm vector for function fx), entries e{+1, —1), in truth-table order
my, m,,...,my._, unless otherwise stated

T Any transform

T" 2" x 2" transform
(Note that all T" transforms will be in Hadamard ordermg unless otherwise stated.)

T, p" xp" transform matrix (used principally in Section 2.7)

Th  jth row of T" (row vector), j =0to 2" — 1

T%  kth column of T* (column vector), k =0 to 2" — |

tx  jth row, kth column entry of T*

R Resultant spectrum of function Z, Ze {0, 1)

S Resultant spectrum of function Y, Ye (+1, —1)

r; Jth entry of column vector R, j = 0t0 2" — |

s; Jth entry of column vector S, j =0to 2" — |

I" 2" x 2" identity matrix (n dropped where no ambiguity arises)

J" 2" column vector whose top entry takes the value 2*, all remaining entries zero-valued

B 2""" — 1, where mis | < m < n, see sub-function definitions .

Used above a binary variable or function to indicate the complement (negation)

General Transform of a Function f{X)
TY=S, Ye(+I.-1), or TZ=R, Ze{0,1)
Sub-functions of 2 Binary Function j(X)

flxgs o cox ) =Axy, .y Xy Uy, .u., ), where u is a constant and (u,,. Sy Un_ ) i the
binary expansion of u, i.e., u = Y7 ru 2!

Y., Z, minterm column vectors for {, ¥Y,e {(+1, —1), Z,e (0, 1), respectively

S., R, spectrum for’Y,, Z,, respectively

Decomposition g, / of a Function f(X) (see Fig. 4.3)

JIX) = KX, g(X)), where g, h may be any function of 7 input variables
R?, §* the spectrum of function g in the above decomposition
R, 8 the spectrum of function A in the above decomposition

Additional Superscript Notations

~ InChapters 4 and § used above an x; input variable when it is a retmppmg from the original
x, input variables, for example, %,

In Chapter 5, used above a function or spectral parameteér where the given function AX)
contains undefined (‘“‘don’t-care™”) minterms, and when the don’t-care minterms are all
allocated the logic value 0, for example, &,

In Chapter S, as above but when all the don’t-care minterms are allocated the logic value 1,
for example, §, )

In Chapter 6, used above a function or spectral parameter to indicate that it is a parameter
of a faulty function, for example. 3,

a

2

*

Mathematical Symbols

+ Arithmetic addition, or maximum of, = Boolean addition for m = 2 case, = logical
OR (the context of use should ldenufy which meaning is present)

x Arithmetic multiplication

Minimum of, = Boolean multiplication for the p = 2 case, = Jogical AND (symbol
dropped where no ambiguity occurs)



List of symbols %

. Convolution

@® Kronecker matrix product

(5] Addition mod,, = Exclusive-OR for p = 2 case

® Multiplication or product mod,

- Cyclic negation, = NOT for the p = 2 case

J J=1,=10,90° .

a exp(2nj/3) = —0.866 + j0.5= 1.0, 120°; used principally in Section 2.7
b exp(2nj/p) = 1.0 L 360°/p; used principally in Section 2.7

HY H* Haar functions
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General Introduction

11 BOOLEAN AND SPECTRAL DOMAINS

In this book we are concerned with digital logic and with the design and
analysis of switching circuits. The majority of existing methods are concerned
with the properties of Boolean functions since it was proved by Shannon'
that the Boalean domain provides a precise model for the analysis of switch-
ing circuits. We are only concerned with a two-valued Boolean algebra for
practical applications, with these two values normally being represented by
0, 1, irrespective of their actual implementation. The behaviour of a device
is represented by a function f(x,, x,, ..., x,) of its input variables x,, ..., X,.
This function ¢an most conveniently be defined by a table. For example, a
function f{x,, x,, x;) of the three variables x,, x,, x; is illustrated in
Table 1.1. . E

It is common to use the product and sum operators of the Boolean algebra
together with negation to define such functions—for example, f(x,, x5, X3) =

X X,X3 + X, X3%3 + X;Xx,%3. The use of Boolean algebra for the manipula- -

tion and ‘analysis of switching circuits is well known and is not part of our
purpase int:this book. We shall be looking at a different domain in which to
express the information required to define and analyse a Boolean function.

Part of the problem with the definition in the Boolean domain is that each
of the entries in the column for f(x,, x,, x,) in Table 1.1 tells us precisely
the behaviour of the function at a single point but nothing of its behaviour
for any other points. It is possible to give an alternate representation of a
function where the information about the function is much more global in
nature. This alternate representation is in the spectral domain, and it will
be demonstrated in the later chapters that a number of properties are much
more easily deduced in the spectral domain than in the Boolean one.

The basic idea of the spectral domain, and how to get there, is illustrated
in Table 1.2. If we are to avoid losing information, we shall have to ensure
that the transform can be reversed, that is, that we can move to and from the
spectral domain without any loss of information.

1
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2 Spectral techniques in digital logic

Table 1.1. The function
X, %, X3) = X X X3 + X X X3 + XXX

X3 X X, Axys xa, x3)
0 0 0 0
0 0 1 i
0 1 0 i
0 1 1 0
1 0 Q 0
1 0 I 0
1 1 0 0
1 1 i 1

Table 1.2. The transform.

Conventional Some Or;ilr;il)ic;::;a:siata
Boolean ropriate == o
appropna different set of numbers
data transform
(not two-valued)
The Boolean domain The transform The spectral domain

To transform the Boolean representation (such as that for f(x,, x,, x3)
given in Table 1.1) into the spectral domain, we take the right-hand column
from the defining table for a column vector Z. Using a particular square
matrix T of the correct size as our transform gives the spectrum R = TZ
for the function. This vector R (of the same size as Z) is an alternate repre-
sentation for the function as long as T has an inverse: For the particular
transforms that we shall be using, the inverse is very straightforward. A
detailed discussion of these is given in Chapter 2.

1.2 HISTORY

Here we shall only give a brief outline of the major developments that have
led to the results that are described in the later chapters. The basis for the
transforms goes back to Rademacher? and Walsh® and the transforms
themselves are particular examples of Hadamard* matrices. Their early
work was followed by others in the area of studying orthogonal functions.>®

The question of the evaluation of the transform has been extensively
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studied, demonstrating that the evaluation can be limited to just additions
and subtractions and moreover only involves n. 2" operations for a 2" x 2"
transform.® !2 These fast transform procedures are explained in Section 2.4.

The applications of orthogonal functions in the digital area came first
in the areas of signal processing and the transmission of information. For a
detailed discussion of this work, the reader is referred to Ahmed and Rao!3
and Harmuth.'* In applications to digital logic and circuit design, analysis
and synthesis, the first suggestion that orthogonal functions might be useful
was made by Coleman.'® He suggested that orthogonal functions might be
useful for the design of circuits, and this theme recurs through much of
Chapters 4 and 5. The appropriate references will be found in the chapters
concerned. A number of books have addressed the use of orthogenal func-
tions and Walsh functions in the digital area, and the reader is referred to
them for related work in this area.'®™*8

'Following the work of Dertouzos'® and Lechner?® it has been shown that
spectral methods yield powerful classification techniques for functions (see
Chapter 3). These classification methods can be used as the basis for syn-
thesis algdrithms and realization techniques.2!-2? They have also been used
as a basis to design universal logic modules.?® In the area of sequential
machine design and state optimization some results have been reported.?4:2%
Besslich?%-27 and Lloyd?®:have considered the idea of prime implicant
extraction in the spectral domain and covering problems. ‘

In 1955 Chrestenson?® generalized the work of Walsh? to the many-valued
case, that is, we are no longer transforming from the Boolean two-valued
domain, but from a multiple-vataed one (p-valued, p > 2). The procedure
of using muiltiple-valued transforms is much more complex than two-valued
and is considered briefly in Section 2.7, but is otherwise outside the scope of
this book. Karpovsky'’ gives good coverage to multiple-valued results and
the reader is also referred to the recent work of Moraga.3%"32

This very brief summary is not intended to provide any detailed coverage
for ‘the various topics. This will be done as they are discussed in the later
chapters. It does however illustrate some of the diversity of the areas of
appl}'pation of the spectral techniques. :

1.3 MOTIVATION

The question arises as to the reason for considering the spectral domain and
if there are any real purposes for its use. To understand the first difference
between the Boolean and spectral domain, let us consider a Boolean function
SX) of n variables. One row of the table defining this function provides



4 Spectral techniques in digital logic ‘

complete and precise information about the behaviour of the function for one
combinatien of the input variables. Of course, it does not tell us anything
about the value of the function anywhere else. The combination of the
knowledge of the behaviour of f{X) for the 2" rows of the table gives a com-
plete definition of the function. Similarly, the spectrum for a function of n
variables also contains 2" values, which together completely define the
function and can be used to recover its Boolean specification. Each of the
2" values in the spectrum (the spectral coefficients) contains some informa-
tion about the behaviour of the function at all 2" points, but does not con-
tain complete information about any of them. The combination of all the
values in the spectrum does lead to complete information about the function,
but each individual coefficient gives us some global information about the
whole function. In this sense the spectral coefficients are giving us global
information about the function, while the Boolean domain consists of local
information. For some applications this global information is more directly
useful than the Boolean representation of the function.

The easiest way to demonstrate the value of the spectral methods is to
give a brief description of the areas that are covered in the rest of the book.
Chapter 2 gives a complete explanation of the spectra of discrete functions
and their calculation, together with some consideration to the use of other
transformations using incomplete and non-orthogonal matrices.

The classification of Boolean functions is explored in Chapter 3, and an
explanation is given of the way in which the spectral classification is con-
nected to threshold functions and other properties of certain classes of
functions. The synthesis and design of circuits is discussed in Chapters 4
and 5. A number of powerful techniques are described in Chapter 4, showing
how certain properties of a function are easily detected in the spectral domain
but may be very difficult in the Boolean domain. This enables a number of
different approaches to design to be considered. Chapter 5 is entirely con-
cerned with the detection of symmetries and partial symmetries in functions,
and demonstrates their value in synthesis techniques. ‘

The most recent application for spectral techniques has been in fault
diagnosis. This exciting area is described in Chapter 6. One of the seripus
problems with digital circuits concerns their testing. There are two aspects
to this—first to verify whether or not a circuit is performing correctly and,
second, if there is a fault, to find its location (fault isolation). Of course,
from the user’s point of view there is not usually much purpose in locating
a fault beyond identifying a chip that needs replacing. There is no need to
identify the exact location of the fault on the chip. We shall be showing that
a check of the correctness of certain spectral coefficients for a digital network
ensures that the network is free of certain types of faults. The testing tech-
nique involved is straightforward and can be easily applied. The required



1. General introduction 5

coefficients for the circuit are called a signature, and the ease with which
they can be derived using spectral techniques and the resulting high level
of fault coverage give a number of promising new ideas for fault testmg in
digital circuits.

Therefore we hope to cover all aspects of the present state of the art of this
subject area in the following chapters. Readers who may wish to be reminded
of the properties of vectors and matrices, we refer to Appendix C inthis
text. Whilst this Appendix covers the general case, where the matrix entries
may be complex numbers, in all our-binary work we shall only need tb be
concerned with the particular case of real entries in the matrix operatt)ns
Complex entries become necessary only when higher-valued logic than binary
is being considered, which is the subject of Section 2.7 only.
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