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Preface

This Solutions Manual is intended to help students of physical chemistry become proficient
at problem solving. To obtain the most benefit from this manual, we encourage you to pro-
ceed as follows: ' 4

1. Readrelevant section(s) in the text.

2. Attempt to solve the problems without using the solutions manual.
3. Reread the text section.

4. Use the solutions manual.

Some obvious steps, such as unit conversions, have been left out of the problem solu-
tions. We hope that this will not cause any confusion.

We will be glad to hear of any mistakes found by the reader. These may be sent to
J. Pope and J. Serafin, in care of Science Editor, College Division, Little, Brown and
Company.

We would like to thank Professor Joseph Noggle for his valuable comments and Ron
Pullins and Sally Stickney for their help.

J.M. Pope
J.G. Serafin
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1

Properties of Matter

Problems

1.1 Dry air is roughly 79% N, and 21% O,. Calculate its average molecular weight and
density at STP using the ideal gas law.

M4~ = average molecular weight = 0.79 My, + 0.21 My,
ﬁ air

The density is given by egn (l.ic)
PM . (101325 Pa)(29.954g) _

€ *&T (3.3143TK') (2335 K)
@ = 0.00129% 9 em 3

"

0.79 (23. 0133) + o.at(sz.n?g) = 28.853.

1293, & 3m’3 or

1.2 Use the van der Waals equation to calculate the pressure exerted by SO; at 500 K if
the density is 100 g/dm>.

From eans. (LIb) and (1), Vm== = -———3—;3 = 0.64 dm”
% e 1003 dmi

The van der Waads eﬁ" (1.3) 15

/



- RT  _ & _(08206dmatm/k)(500K)_ (6.?|dm‘%bb or
P= V- b Vor © (4Fdm® = .0664dm?) (.64dmd)*

P=539 atm.

1.3 Caiculate tl;e molecular diameter (o) of CO, from its van der Waals constant.

From e%n (1.4), 6 = ('Z-'WL) Uganj data 'Fr-om Table 1. I,

= (;w(uo:;z?l‘:;?;za) 's = 323X10" Tdm = 3.32X10 %cm.

1.4 Calculate the pressure exerted by 3.00 moles of CO, in a 9.00-dm’ container at 400 K
using (a) ideal gas, (b) van der Waals. (c) Repeat the calculation for a volume of 2.00 dm?,

a) From +he idead gas Law, P = -QVRI or
p= (3.0)(.08206 dmatrmK-') (400 K) _

(2.0 dm?) 10.94 atm.
b)From eqn (1.3), P= nRT _n*a .
7) V-nb A
= (3.0)(.09206 dm>at, K- ')(1*00]() (3.00(3.5 + 5.
?dm® — (3.0)(.042% dm?3) __-—7_4_(9 S dmg\): ™m lo 30 atm

CIWith V=200 dm? Tdead Gas Law: P =49.23 atm,
van der Waals : P = 44,52 at+m.

1.5 Use the Dieterici equation to calculate the pressure exerted by 3.00 moles of CO, at
400K i ina container with volume (a) 9.00 dm>, (b) 2.00 dm’.

- RT
P =xp RTVL) -
a) Uﬁl.nj Table 1.1 and Vw, = 3.00 dm,

p = (-98205 dm’atmk-)(400K)
(3.00 dm?*~ .0463dm>)

From c%n (1.6 :

exF ( 4.621
(.08206)(+00)(3.00)

B With VY5 dm®, P =42.94 atm.
| 2

= 10.60 atm.




1.6 Calculate the molar volume of CH, at 298 K and 10.0 atm using (a) ideal gas, (b) van
der Waals equation of state. .

a—)From eqn ‘(.l.lb),\/,,.,-' RT _ (08206 dm’ahnk“)(z‘i?KL 2 445 dm?
P g(:o atm)

b)Start with eqn (1.9) v, =RT . .

o 3 NP+(%': +b. Use +h,e'deq£

3&5” solution from par+t a) o $ind the r‘%jk{‘-hand

side and continve H-er-o.h'nj : V,,f‘) = 2.445 dm3,

Vo= 2,399 dm?, V, = 2.396 dm?, VP = 2,396 dm?.

1.7 Use the var der Waals equation to calculate the volume occupied by 5.00 moles of NH;
at 300 K, 7.00 atm.

Same method as in Le b). From the ideal gas law,

R .
VI NRT _ 17.5% dm3 T+erate +o find V¥ <« 16.90 dm>
P

1.8 Show that the Dieterici equation is nearly identical to the van der Waals equation at
high temperatures or low densities (i.e., when a/RTV,, << 1).

Expand e‘b"'““’-) in a Taylor series :
- RT [ - SRR . _\* a
Pyl R hlerve) + ) TF g <<

P A RT - ]
- VM" b (Vm. b) Vm ‘

= RT_ . . - .
P = b -\%:5_ ,Which is nearly identical

+o 4+h e above.

The van der Waals egn. i



1.9 The data below for acetylene at 25°C give the PV product divided by PoV, (at 0°C and
Fatm). Use a graphical or least-squares method to determine PoV, and the second virial
coefficient at this temperature.

P (atm) (PV/PoVo) P (atm) (PV/PoVo)

0.5 1.0989 6 1.0531
1 1.0937 8 1.0385
2 1.0841 10 1.0255
4 1.0684 12 1.0139

From egn (1.13) , PV & RT+8P. Dividing by PoVe gives

f_‘_’_=~&I+P_B_) Regresgsi
PVo PoVe (P,v‘,- Jressing

PY = \d
BV, vs, P yields
Slope = Bv = -3422% X10°3 % 2.0253x10"% anrd

0 [-]

ln+ercep+ = .%_% = 1,0999 % .0014 . Then PRV, = 22. 243 dnyatm
ovo

and B =~ -0.l65dm?3,

1.10 Use the measured compressibility factors given below for methane at 203 K to
calculate the second virial coefficient. You could also get an estimate of the third virial
coefficient (C) from these data.

P (atm) z
1 0.9940
10 0.9370
20 0.8683
30 0.7928

-

From eqns (1.10) and (L.ID, Vp(2-1)=B+ = C with V= —%—
A plot of Ve (z-1) Vs.-\lfm gnves 5|oPe_ =C= d

and ‘ntercept =B = -.100 clm‘3

1.11 The virial coefficients [for Eq. (1.13)] of hydrogen at 223 K are given below (PV in
dm® atm); use them to calculate the compressibility of this gas at 50 atm.

B = 1.2027 x 1072, 5= —1.741 x 107®

y = 1.164 x 1075, e=1.022x 107"
2 + .
Rearrange. e$n (1.13) Yo = —H- BP y’P + SE; SE’PI'_ Plugain% n

the data, Z=1.03¢43

4



1.12  Calculate the second virial coefficient of N, at 473.15 K using (a) van der Waals,
(b) Beattie-Bridgeman, (c) Berthelot equations. The observed value is 14.76 cm’.

n

0)From eqn (1.1¥), B= b -~ ﬁg'-‘r' . Usin3 +the data of Table I,

B= 3.3em? For N,.

1

b)From egn (1.16), B = By~ é:‘." ":CF:;. Usu'nj +he data of

Table 1.2, B= 15.4 cm®.

QRT. (, _ 6T .
128 P:.(‘ 7% ) Using +he data
$rom Table 1.1, B = 0.0125dm>®= 12.5 em>

¢)Frem egn (113), B=

1.13 Calculate the Boyle temperature of argon using (a) van der Waals and (b) Berthelot
forms of the second virial coefficient. (¢) Use the Beattie-Bridgeman form of the second
virial coefficient to calculate the Boyle temperature of argon. The actual value is 410 K.

a)FrAm egn (1.18), T3=f—'§~ .Using +he data of Table I.1
Tg = 509 K.

BIFrom eqn (11, Tg > V6 T . Thus Tg = 370 K.

¢) Se#fnﬁ B(Tg) =0, B(Tg)=Bo" Ao - —Q‘-; =0 and

A RTa T8
0 c _ .
T:" (35,)752 -~ B, -9 Usm3 Table f.2,

To? - 40012 Tg* - 1.5239X 10°K3 =0. The solution js (see

Appendix I of tex+) Ty = 409 K.



1.14 Calculate the Boyle temperature of He using the (a) van der Waals, (b) Berthelot,
(¢) Beattie-Bridgeman forms for B(T').

a) Same method as l.13a, Tg= I¥+K.
b)Same method as 1%a, Tg= I3K.

¢)Same methed as 1134, Tg= 24K.

1.15 Derive an expression for the second virial coefficient of a gas in terms of the Dieterici
constants from Eq. (1.6).

’ PVm - Q.
MMH“IPIY e%n (1.6) by %? +o 3@*}' l’ﬁ- =\./:ﬂ QXF (.EWM) .

'ExPo.ndimj the e.xponen'i‘i'al. in a Taylor series,

Y/
-z-\;;:"—’;(|—i%\z“+ ‘/7_(.2._107-@)"+,,.>.Also

V. | b, + (¥ )" +... Thus
m o —— = l + .

2 =(, f%n'h”)("i%—v +...)= ;+_(b...£__-_‘_)_\l/_m_ (%)_‘17':4_

m

Com]:mrison +o e%n (L1I1) shows B-f‘- b - -ia%‘-‘

1.16 Use the data below to determine the critical constants of Cl,.

Liquid density  Vapor density

t (°C) (g/cm’) (8/cm’)
98.9 1.115 0.124
104.4 1.087 0.139
110.0 1.057 0.156
115.6 1.025 0.179
121.1 0.989 0.203
126.7 0.949 0.231
132.2 0.894 0.268
137.8 0.814 0.321
143.3 0.599 0.523

Use +re method illustroted in Fu‘sure. 1.4. Calculate

P‘“’3= l/,_(p‘u%.g- P"P) and make +he :Follown'ns plot



From the plot,

140 4 e critical point
15 at ¢,= 144°¢
130 1
(%) and Qc= 0.5% g/em?
120
| For Cl,, M= 3109064
fre V, = M eem®
€e
100 |
%o > @ (3/¢m3)_

1.17  Use the Berthelot equation (1.5) at the critical point to derive relationships between
the critical constants and the constants @ and b.

" : Te
For 337\ (1.5) at the critical potn+, P = 5_"0 - Ta:/cz_ .
< <

2P - RT za  _ %P, _ 2RTe — ba
e = (3 + == =0 = < p——— -
We | (Vp-b):  TeV.? YWVt V- b® vt T O

We combine the last -Hvo eﬁua,-Hons to $ind V.= 3b,
-
Substitute +his into %—5—2 to $ind T.= V %%7Rb .

~ Substitute +his and Ve=3b into +the exFreSSc‘on for Pc_,

- Ro.

1.18 Use the law of corresponding states (Fig. 1.10) to calculate the molar volume of NO
at 165 K and 19.5 atm.

From Table 1.1, we have for NO

~ T _165_ 092, Pr=.2 . 13:2 - 0 300
T = 193" % " P 65

7



t .
Frorm the Yiow pressure r‘ealon" Par-r- of F.'Sure. I.10

we find 2 = PEY?"“ =083 $0 V= O'E%ET = .58 dm?

1.19 Silicon tetrafluoride (SiFs) has a critical temperature 259.1 K and critical pressure

36.7 atm. Calculate the van der Waals constants; then use the van der Waals equation to

calculate the vapor density of this gas at STP.

From Table 1.4, the van der Waals constants are

27 RIT,* 27(.08206 dmPatm/KD(259.1K)2

a = - _ 6

Wi Po 64 (367 ote) 519% drﬁ atm .
b = RTe _ (.08206 dmPatm/K)(259.] K) = 0.0%34 dm?

9P 2 (36.7 atrm)

CaICuﬁah'nﬂ Hhe molar volume with egn (19) as In

problem 1.6 b) with the First V.= BT v?=23.415 dm?,

V= 23.a59 dm3 V= 23.254dm? and V= aa.as¢ dmd.

The density is @= Mo 1040099, - 4679 9/dm?

1.20 (a) Calculate the Dieterici constants of methane from the critical constants.

(b) Use these constants to calculate the pressure of methane when T = 270 K, —
V,, = 0.1 dm’.

(c) Use successive approximations and the Dieterici equation to calculate V,, when

P =10atmand T = 270 K.

OFrom Table 1.4, +the Dieterici cons+qn+s are

_4RTS  4(.08206 otmdm¥/i$t190.¢ KO? 6
a= [ = (=3 . -
TP, ° e (45.8 dm3) 2.29) dm” atm

b= E'IP"‘_ ; (;09206a+mdm3/i<)(190-64’§) = 0.04622 dm?>
e*P. % (45.8dm3)

b) From egn (1.6), P =v_v§_.l-.b exp <ﬁ;) = 1L F atm

§



——~—T

¢) Re.Wri-anJ egn (1.6) as V= BPI ”P(‘E’ﬁ-@'\?m) + b, we solve
tijs as we did in Pkobie.m L6 b) , with Y= ngg.medn?

as a First approximathon. Then V= 2135 dm?,

Vyf«?)‘-‘- 2.130 d®, V.-f,"’=a.i30 dm>.

1.21 Calculate the number density n* of an ideal gas at 298 K and 1 atm.

From a%m (1.232b)  the number dehsﬁ‘}/ %

*_ PL (I atm)(s.02 23 )
n = < .02213x10%3) ‘ 5 -3
kT (.0820batmdm) (278 K) 2463 X 10 Tem T

1.22 Calculate the number of collisions which hydrogen molecules would make with 1 ¢m?
of a wall in onc second at 150 K and a pressure of (a) 1 torr, (b) 1 atm.

@) Erom eqn (12ab), n¥=PL_ . (1.7‘50 atm)(6.0221FX10*3)
‘ ' o -3 (08206 ctendmi)150 K)
n¥ = ¢.45% X160 "em 7 From 2gn (1.23),

3
2 it = n¥(7505 Yo (6.43?x:o"‘/cms)(?'3"’3" 107erg /e (150 ’<>)"¢-
: 2w a.0le j)

Zwall = 2.02 X 10%cm 257,

B) At P= latm, n* = 4.892 Xio e 2 2 yay = 184x 102 em S

1.23 Ina Knudsen experiment, a substance with a molecular weight of 0.210 kg is placed
in a cell with a hole of area 3 X" 107 m’. At 500 K, the weight lost in 10 minutes is 30 mg.
Calculate the vapor pressure of this substance.

. - AW pr = (3X107°%kq) 1000 o) = 53
We $+a.r+l with = S5 AT ém)(w 5)= 1.b6# X1
From eqn (1.34) , the vapor pressure is

_ RT Vi _ ~3,/2n (3, % 3
P=pu (2T21)" = (1667 x:o-”)( U fus i/j“)‘s""")) % 580X 1B%tm.

. |



1.24 Derive a formula for the speed distribution of a two-dimensional gas. This has
application in the study of adsorbed species which may have freedom of motion about the
surface of the adsorbent.

be -bV,z
Proceed as in 3 dimensions ;F(V,Vy)= a*e e

- bv* ; .{"h—n’_‘ - . : .
ate where_ &= Tzxir b= ﬂ-rr. Points n Ve_\oc.n‘-y

space With sPeeds between v and V+dv will lie

within a rina of area. A=2ZyvdVY , thus

2 :
ftwdv=ate “bVEaavdy = ~—-— e—XP( {."3— )dV iQ‘?:‘D space.

1.25 Calculate the average and rms speeds of N, at 500°C.

From eqn (1.33), the average speed is
v 1/a‘w:r‘_ (3.3143T/K N(FT3.15K) _ 5,0
™ " m/s.

v = m(-0290 ka)
From egqn (1.29), -
W= -/ BRT " _ 3(83143T/k)(?#3.U5K) _ 830 m/s.

M (0290 ka)

1.26" Calculate the average, rms, and most probable speeds for CO, at 300 K.

- JerT'_ (8(83143T/k)(200K) 0
Frome.%n (1.38),\(“/,'?_ = T (o#roiks ) ) 280 m/s

From eqn (1.38), u:.ﬁ_g': (ﬂs{.zg::gﬂ;ioon) ho 1L s

- ’g._‘xl - ,Jz(c.ans T/K)(BOOK) . 33F m/s
M (.04401 kj)

/0



1.27 Calcuiate the fraction of molecules in a gas which have velocities greater than 3v,.
The required integral can be done numerically (Appendix I); it will be sufficiently accurate
1o use five steps for 3 < (v/v,) < 3.5 and five steps for 3.5 < (v/v,) < 4.5; above 4.5 the
contribution is insignificant.

The fraction of molecules with speeds in a given

We .
interval is P(Y,toV; -_;;?L&—w w"dw, egh (1.40b),

where w= /VP,'For- +he intervad frem w,= 3vp

2

to w, = ©: p"_—l% e’ww"dw. A numericad solution

(Appendix I, SimFSOn’s Rule) gives P= 440 ppm.

1.28 Calculate the fraction of molecules in a gas which has a kinetic energy greater than
10T

A molecule with kinetic energy E=10 kT =)amv,?

has v, = Z%EI'. The fraction of molecules with

o 3
V>Vs is given by eqn (1.40b),P(v3%)=El e dw
_}zogr' W,
where w,=yvr= ;g-_r = o', Thue Srom pumericad

:n‘f‘eﬁra—hon (App I Sansons Rule.)P(v>V,)-l7Xlo4'

1.29 Find the distance r/o at which the Lennard-Jones potential U(r) is a minimum. Show
that the value of U(r) at the minimum is —¢.

V(r) is a minimum when dV(r) = 0. From egn (1.43),
vir) =4¢ ([£]'-[£]°): dyio. +a(—-—-§'z+ ‘ﬂ"") °.
Thus rp,, = 2%6 . I+ is easuly verified +that d >0
SO r is a minimum. lhen V(Q=4"E[/4—"'/z}=—-£.

>

/1



1.30 Calculate the thlrd virial coefficient (C) of CO at 300 K from its Lennard-Jones
constants (Table 1.7).

From e%n (1.45) and Table | .7, T* (;l’/ ) = lzoog.i =

From F:aure. .22, we’read 0¥z 0.35. From eqn (1.48),
C=b*C¥c= 1.6x1073dm"

2,994,

1.31 Derive a formula for the second virial coefficient from the Sutherland potential with
n = 6. Assume ¢/kT <1 so that the exponential can be expanded with e” = 1 + x +
x?/2 + x*/6 + - (keep =xactly that number of terms).

The Sutherland petentiad is y= o o<rets
U."E(-‘) 6 <r 4o

Usms e%n (1.41) over 2 reqions of m+e,3r~ochon
B(T)= 2wl U rdr *J(l- - W )err-]. The first
m-}-egraﬁ is 27 Lff-"dr- 2y T L6? =bo. E-xPamo\ins

+he axponenhail of ~qu second m+ac3r-d.

® 6 '
zwau- Ty = 2L (5.50. e v L8 Y ar

~b, <k€r+6(kT) 30(!\T)+ )

thus B(T)= by(1 - H -t (&)L (&)+...)

1.32 Derive Eq. (1.49) for the second virial coefficient of a gas with a square-well
potential.

u=-t oc<rdRes

The s%uo«rc well Fo-i'ehh'ql‘ s (U= 0<r e
U= 9] R6E<r ¢ o0

Pro ceedinﬁ as I'n Froblem .31, egn .41 gives

12



