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PREFACE

In this second edition of University Physics we present students with an
authoritative and easy-to-use text. Among the features that we deem important
for a beginning physics textbook are:

* a sound pedagogical presentation
» the systematic development of problem-solving skills
* a special sensitivity to students and their goals

A SOUND PEDAGOGICAL PRESENTATION

We present the most important physical principles in the least intimidating
way. The unity of physics and the universal character of its principles are em-
phasized. Basic concepts are illustrated with numerous examples, many drawn
from such diverse areas as astrophysics, sports, and the environment.

A SYSTEMATIC DEVELOPMENT OF
PROBLEM-SOLVING SKILLS

A step-by-step Problem-Solving Guide is introduced in Chapter 3 and extended
in Chapters 6 and 28. Students are shown how to approach and solve problems
in a systematic fashion. The Guide is illustrated with numerous examples.
The text of each chapter concludes with a challenging Worked Problem,
typical of those found in the end-of-chapter problem sets. Each chapter presents
a set of Exercises and Problems that allow students to test their grasp of the
principles. Single-concept Exercises reinforce ideas developed in the current
chapter. The Exercises are followed by a set of substantive Problems that often
illustrate the “vertical” structure of physics and require students to draw on
concepts learned in earlier chapters. In this edition, we have provided a wide
range of problems, with many problems at the challenging end of the spectrum.
Instructors can readily match the abilities of their students to the problems.

A SPECIAL SENSITIVITY TO STUDENTS

Our goal is to create a learning environment that inspires student confidence.
We are patient with students. For example, we have considered students who
are taking calculus concurrently. The first five chapters avoid calculus and allow
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students to develop problem-solving skills and build confidence before being
confronted by calculus-based problems.

Also, the liberal use of examples and illustrations, and our Problem Solving
Guide, help to produce the sensitive atmosphere for which we strive.

PATHWAYS THROUGH THIS TEXT

There are many ways to structure physics courses, and this text can be used
in a variety of ways to meet that diversity. Here at Miami University we use
the text in two slightly different sequences. In class sections open only to
entering freshmen, the first semester covers Newtonian Mechanics (Chapters
1-13) and Special Relativity (Chapters 39—40). The special relativity is
interwoven with Newtonian mechanics. The second semester is devoted to
Electromagnetism (Chapters 23—35). Many of the students continue with a
third semester that covers Materials and Fluid Mechanics (Chapters 14-15),
Waves (Chapters 16—17), Thermal Physics (Chapters 18—22), Optics (Chapters
36—38), and selections from Contemporary Physics (Chapters 41—42).

In the other sequence here, upperclass students form a more heterogeneous
audience. The first semester covers Newtonian mechanics, materials, and waves.
Special relativity is omitted. The second semester covers electromagnetism and
optics.

SUPPLEMENTS

We provide an Instructor’s Answer Book, a Student’s Solutions Manual con-
taining solutions or hints to approximately twenty percent of the Exercises and
Problems, and a set of transparencies. Instructional software is available for
IBM compatibles and Apple II series microcomputers. A Study Guide written
by T. William Houk, James E. Poth, and John W. Snider offers additional
insights and opportunities for students to sharpen their problem-solving skills.
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CHAPTER 23 Electric Charge

Neutral
Before Neutral ( 0]

FIGURE 23.2
Separation of electric charge when a glass rod is rubbed with a silk cloth.

Conservation of Electric Charge

The concept that a net electric charge can never be created or destroyed
goes back at least to Benjamin Franklin. When a glass rod is rubbed with silk,
electrons are transferred from the glass to the silk, giving the silk a negative
charge and leaving the glass rod with an equal positive charge. This transfer
of electrons is illustrated in Figure 23.2. No change in the total charge of glass-
plus-silk occurs. Conservation of charge has been tested repeatedly in the realm
of high-energy physics and has been found to hold without exception. The
principle of conservation of electric charge can be stated as follows:

The net electric charge remains constant in all processes.

The next two examples illustrate the conservation of electric charge in
nuclear processes.

EXAMPLE 1
Uranium 238 Alpha Decay

The radioactive uranium 238 nucleus 33U disintegrates by emitting an alpha particle
(helium nucleus). This nuclear reaction may be written as

2380 - ‘Z‘He + ZggTh

The superscripts give the combined number of neutrons and protons in each nucleus.
The subscripts give the number of protons in each nucleus and therefore measure the
positive nuclear charge. There are 92 protons in the uranium nucleus. The decay prod-
ucts contain a total of 92 protons, 2 in helium and 90 in thorium. The balancing of
the subscripts, 92 for both sides, describes the exact conservation of electric charge in
this nuclear reaction.

In Example 1, electric charge in the form of protons is simply rearranged.
Sometimes electric charges are created. When this occurs, positive and negative
charges are created in equal amounts, keeping the net charge unchanged.

EXAMPLE 2
Carbon 14 Beta Decay

Carbon 14 (}4C) has six protons in its nucleus and is formed in our atmosphere
by cosmic ray bombardment of nitrogen. Carbon 14 is unstable and transforms into
nitrogen 14 by emitting an electron and an antineutrino (zero mass, zero charge).

HCoUN+ _je+7v
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In this process one of the 8 neutrons in the carbon 14 nudleus is transformed into
three particles: a positively charged proton, a negatively charged electron, and a neutral
antineutrino. The proton, the electron, and the antineutrino are created in the reaction.
Although both positive and negative charges are created, the net charge remains the
same (+6 before = —1 + 7 = +6 after).

23.2

COULOMB'S LAW

A quantitative breakthrough in electrostatics occurred in 1785 when the French
scientist Charles Augustin de Coulomb measured the force between two small
electrically charged spheres. Coulomb found that the force between the charged
spheres was inversely proportional to the square of the distance between them
and directly proportional to the product of their charges:

4192
Foc—=
)

This proportionality is converted into an equation by introducing a propor-
tionality constant. The result is known as Coulomb’s law of electrostatic
force and may be written as

9192
= k. —== 23.1
F ker2 (23.1)

The SI unit of charge is the coulomb (symbol C). The operational definition
of the coulomb, based on magnetic effects of electric currents, is presented in
Chapter 30. The proportionality constant k, is

k, = 8.98755 x 10° N-m?2/C? (23.2)

Like all forces, the electrostatic force obeys Newton's third law. That is, Equation
23.1 describes the magnitude of the equal but oppositely directed forces that
the charges 4, and g, exert on each other (Figure 23.3). The Coulomb force
is repulsive for like charges and attractive for unlike charges.

F21

a1

N2

q2

Fi2

FIGURE 23.3

F,, is the force exerted by g, on g, and F,, is the equal but oppositely directed force exerted
by g, on q,. If g, and g, have the same sign, the forces are repulsive, as shown here. If q,
and g, have opposite signs, the forces are attractive.
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EXAMPLE 3
Electrostatic Repulsion

Let's calculate the force of repulsion between two 1 C charges 1 m apart. From
Coulomb’s law (Equation 23.1) we have

(10)?

= (8. 9 N-m2/C2) -
F=(899 x 10° N-m*/ )(Im)2

=899 x 10°N

This is a force of about 1 million tons. Clearly, one coulomb is an enormous charge.
In fact, this example is unrealistic in the sense that we could not get charges of 1 C
to stay on small surfaces separated by 1 meter.

Coulomb’s law of electrostatic interaction and Newton’s law of universal
gravitation have the same mathematical form; both are inverse square laws.
But what about the relative strength of these two fundamental forces? Let’s
calculate the ratio of the electrostatic force and the gravitational force between
an electron and a proton. These forces are described by Coulomb’s law (Equation
23.1) and Newton’s law of universal gravitation. The ratio is

" (%%)
Felec - ¢ r2 _ keqeqp

Foray C (me;np> B Gm,m,

r

Note that the distance factor cancels out. The value of the ratio is

Faee & 3 x 10%
grav
This is an enormous number. Imagine grains of sand so fine that you can pack
10° grains in 1 cm3: 10 of these grains would occupy the volume of a million
earths! Clearly, the electrostatic force is far stronger than gravity.

The fact that Newton’s law of gravitation and Coulomb’s electrostatic law
have the same 1/r? distance dependence has impressed many scientists, includ-
ing Einstein, as more than mere coincidence. So far, no profound relationship
or common origin has been discovered.

23.3 N

SUPERPOSITION

Coulomb’s law specifies the force between a pair of point charges. When more
than two charges interact, experiment shows that the net force on any particu-
lar charge is the vector sum of the Coulomb forces exerted on it by the other
charges.

EXAMPLE 4
Superposition

Charges of 3 uC, 4 uC, and 6 uC are placed along a line (Figure 23.4). Let's use
Coulomb’s law to calculate the two separate forces exerted on the 6 uC charge. First,
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.

2m I F3g

3.uC 4uC. 6 uC Fas
|
|

}-———1m

FIGURE 23.4

The total force on the 6-uC charge is the sum of the forces exerted by the 3-uC and 4-uC
charges.

consider the force exerted by the 3-uC charge. From Coulomb’s law (Equation 23.1)
the force exerted on the 6-uC charge is

8.99 x 10° N-m?/C? (3 x 10"° C)(6 x 10°6 Q)

(3 m)?
=180 x 10"2N (directed to the right)

Fy6 =

Next, we consider the force exerted by the 4 uC charge.
8.99 x 10° N-m?/C? (4 x 109 C)(6 x 10" C)

(2 m)?
=539 X 107N (directed to the right)

Fa6 =

Superposing F3¢ and F,¢ yields the total force on the 6 uC charge:
Fg = F36 + F4 = 7.19 x 10”2 N

To within the limits of experimental accuracy the total force on the 6 uC charge has
been confirmed to be the sum of Fy5 and Fug, or 7.19 X 10”2 N. In other words,
experiment shows that the presence of a third charge does not influence the Coulomb
force between the other two charges.

We can generalize the experimental result stated in Example 4 by saying
that electrical forces obey a principle of superposition:

The net force exerted by two or more eharges on a single charge Q is
the vector sum of the individual forces exerted on Q.

Keep in mind that this principle is the result of experiment.

Vector Form of Coulomb’s Law

The electrostatic force is a vector quantity—it has direction as well as
magnitude. We can write Coulomb’s law in vector form by introducing a unit
vector to indicate direction. In Figure 23.5, £, is a unit vector directed from
q, toward g,. The force F, exerted by 4, on g, is

Fio=k, %f'lz (23.3)
12

If the charges 4, and g, are both positive or both negative, the force is repul-

sive, and F,, is parallel to £, , (Figure 23.5a). If 4 and g, have opposite signs,

then the force is attractive, indicating that g, is urged toward g, (Figure 23.5b).
Example 4 involves only parallel forces. Now let’s apply Equation 23.3 and

the principle of superposition to a system where the forces are not parallel.

We build in enough symmetry so that we can check our results.




12 F12

FIGURE 23.5

F,, denotes the force exerted by g, on q,. The unit vector fy,
is directed from g, toward g,. (a) The direction of F,, indicates
a repulsive force between like charges. (b) When g, and g, have
opposite signs the force is attractive.

EXAMPLE 5
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Yy
F21 Fy = F21 + F3q
F31 Fa1
a1
r21 31
raq ":31
60° 60°/
L 2 x
q2 93

FIGURE 23.6

A 1-uC charge is located at each vertex of the equilateral triangle.
The net force F, on g, is the vector sum of the forces F;, and
F,, exerted by g; and g,.

Vector Addition for Coulomb Forces

Consider three 1 uC charges at the vertices of an equilateral triangle, 1 m on a side

(Figure 23.6). What is the
charge (q,)?

net force that the two bottom charges exert on the top

Figure 23.6 shows that the array of three equal charges has left-right symmetry
relative to a vertical line through g,. We know from this symmetry that the net force

on g, will be vertical and

in the upward direction. (All charges have the same sign;

all forces are repulsive.) The net force on g, is the vertical component of the force
exerted by g, plus the vertical component of the force exerted by g3. Since the two
vertical components are equal by symmetry, the magnitude of the force on g, is

F, = 2k, (”7_1‘;1_&) - cos 30°
r

= 2(8.99

= 1.56 X

10°9C-107°C

x 10° N-mz/C2)|: T2 ] * (0.866)

10"2N"

Now, let's go through the calculation in detail using the vector form of Coulomb’s

law. The unit vectors are i
on q,—we have

llustrated in Figure 23.7. For F,;—the force that g, exerts

9192

Fpy =k, T2 lA’21
21

= (8.99 x 10° N-mz/Cz)[

A

I

107°C-10"%C
(1 m)?

=899 x 10 3%, N
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g

y
21 ?31
j sin 60° j sin 60°
60° 60"/'
2 - X
i cos 60° - —icos 60°

FIGURE 23.7
The unit vectors ¥,, and f,, can be resolved into x- and y-components.

We can resolve the unit vector t,, into its Cartesian components (Figure 23.7)
3, =i cos 60° + j sin 60°
This gives
F,; = (8.99 x 1073 N) cos 60° i + (8.99 x 103 N) sin 60°

= (449 X 107* N)i + (7.78 x 1073 N)j

The force Fj; is given by
F3 = ke(%)f'sx
31
The unit vector 15, is given by
r3; = —icos 60° + j sin 60°
This gives
F3, = (—4.49 x 1073 N)i + (7.78 x 10~ 3 N)j

The net force on 4, is the vector sum of F;; and F5;. The horizontal components
cancel each other because of the symmetry of the system. The result is

F, =F;; +Fy
= (1.56 x 10”2 N)j

This shows that the net force is vertically upward with a magnitude of 1.56 x 1072 N.
This solution agrees with the first calculation.

Using symmetry made it easier to find a solution. If symmetry is not present, however,
we can still find the net force by using the vector form of Coulomb’s law and the principle
of superposition.

Continuously Distributed Charge

All electric charge distributions are collections of discrete charges such as
electrons and protons. However, when we consider a large number of closely
packed charges, we can treat the distributed discrete charges as continuous.
To determine forces exerted by continuous distributions of charge the principle
of superposition may be applied, but integrations replace discrete sums.

Figure 23.8 shows a line charge, a collection of charges spread continuously
along a line. A point charge Q located at the point P experiences forces exerted



