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1. Coherent Nonlinear Optics

M. S.Feld and V. S. Letokhov

The gold rush phenomenon—an intense period of rapid discovery and exploitation—
i$ a well-known phase experienced by many fields of the natural sciences at cer-
tain pofnts in their evolution. Optical physics, stimulated by major advances in
laser research and technology, is currently in the midst of such a period. Every-
where new veins of gold are being uncovered and mined by thousands of prospectors,
most of whom have crossed gver into this exciting research area from a diversity
of other disciplines. TheAr principal tool is the laser and its associated analy-
tical, spectroscopic and dynamical techniques. The purpose of this volume is to
make available to our co-workers in optical physics in-depth reports on the cur-
rent status of a set of important topics in this rapidly changing field.

The Taws of optical physics were formulted 50 to 100 years ago. They remain
true for laser light and, in fact, form the basis of operation for the laser it-
self. However, coherence and nonlinearity are relatively new concepts which have
become central to describing the interactions of laser light with matter. These
ideas are fundamental to the many new techniques becoming available for studying
atoms and molecules. Coherent nonlinear optics is the theme of this book, and the
editors have brought together a selected set of specifically prepared reviews of
current topics of active interest. Three major areas—coherent resonance effects,
multiphoton resonant processes and coherent Raman processes-—are covered.

1.1 Introductory Comments

The ccherent nature of the interaction of laser Tight with matter manifests itself
in different ways, with interesting applications. About twenty-five years ago
DICKE [1.1] pointed out that the spontaneous emission from an ensemble of excited
quantum systems can occur at a greatly accelerated rate, via a mechanism he termed
superradiant emigsion. In this process the particles respond cooperatively because
of their mutual interaction with the common radiation field, giving rise to co-
herent radiation. DICKE's original discussion considered both optical and micro-
wave emission, but it emphasized the latter regime, where the sample is small com-
pared to the wavelength » of the emitted radiation. Four years later the laser was

5506257



proposed [1.2] as a means of extending the maser principle of generating coherent

microwave emission into the optical spectral range. The production of coherent
radiation by lasers and masers is based on the principle of. stimulated emission
from excited particles into a small number of modes of_an optical resonator (one

mode in the ideal case), a process which is distinct from superradiant emission.

The laser principle is, of course, now widely used to generate coherent light.

Hevertheless, the production of coherent optical radiation via cooperative spon-
taneous emission from an ensemble of excited particles outside the resonator is

of great physical interest. However, the theoretical results developed for long

waveleng{h superv‘adiance are not directly *pph‘lcab}e to the optical regime, since
the sampTe volume is much larger than A3, ﬁ“his ﬁas‘ recognized in the first demon-.
stration of superradiant emission [1.3], and much recent attention, both experimen-
tal and theoretical, has been given to the exploration of this interesting effect.

The present state of our understandlng of ‘superradiance is reviewed in Chap 2 by

Feld and MacGillivray,

- High-resolution laser spectroscopy is rased on the ablhty of 1aser radiation
to induced nonlineéar behavior and phase cpherence in atomic and molecular systems.
These principles have led to a set of new methods for producing'extrenely narrow
"Doppler-free" spectral resonances in two-level and multilevel systems. The concept
of saturating an atomic transition by means of monochromatic laser radiation was
first worked qut by LAMB [1.4] 4n his 1974 analysis of a gas laser, and narrow i
laser saturation resonances were observed shortly thereafter [1.5]. The extension
of these ideas to three-level systems soon followed [l.é]. These initial develop-

" ments have led ‘to a series of techniques which are now standard tools for precision
studies of atoms and molecules [1.7,8). One of the most important recent develop-
ments in this area is the extension of the method of separated fields to the opti-
cal regime [1.7,8]. The separated fields technique is based on the fact that when
a beam of atoms traverses a region of electromagnetic field, phase memory of the
resonant interaction is preserved. Constructive interference can then occur as the
atoms pass through a second field. This property is fundamental for producmg very
narrow absorption resonances in separated microwave fields [1.9]. Unfortunately,
it cannot be directly applied in the optical range because the separation between
. the fields is Targe compared to A. Indeed, because of the divergence of the atomic

beam, the atoms traversing the first light beam at a given point, and hence ac-

quiring an optical polarization of a given phase, intersect the second light beam
at a range of points, thus giving rise to destructive interference. CHEBOTAYEV

and c¢o- ~workers [1.10] showed that this obstacle can be overcome by us1ng two-

photon transitions or, in the case of single-photon transitions, by using three

optical fields. These techniques, which 'are closely connected with the photon echo
effect [1.11], are now among the most powerful and elegant tools in the field of
high-resolution laser spectroscopy. Coherence in 'high-resolution laser spectroscopy
is reviewed in Chap. 3 by Chebotayev.



Multiphoton processes are one of the main sources of nonlinearity in the inter-
action of intense laser fields with atoms and molecules. Resonant multiphoton
processes are of special interest: First, multiphoton transition probabilities are
enhanced under resonance conditions, and can be observed in fields of moderate
intensity. Furthermore, such processes find various applications in laser spec-
troscopy. Tﬁo-quantum resonant transitions in a standing wave field is an important
method for eliminating Doppler broadening [1.12]. One of the techniques of high-
resolution laser spectroscopy is based on this approach [1,7,8). Resonant multi-
step processes permit selective photoionization of atoms, This approach is fun-
damental fbr laser methods of single-atom detection (1.13], which have recently
been demonstrated experimentally [1.14]. The field of multiphoton resonant processes
in atoms is reviewed in Chap.4 by Biraben, Cagnac, and Grynberg.

Over the past few years impressive progress has been que in studying multi-
photon vibrational transitions in polyatomic molecules induced by>fntense infrared
e.m. fields. The first successful deﬁpnstration of isotopically selective multi- -
photon excitation and dissociation by intense CO2 laser pulses [1.15], in BCI3,
followed by similar experiments in other molecules, has triggered a torrent of
experimental.and theoretical activity. This wide research area, now called multi-
photon (or multiple photon) infrared photochemistry, has.already become the subject
of special reviews [1.16,17]. Among these works are numerous papers devoted to the
coherent interaction of a multilevel quantum system, the levels of which are
almost equidistant, with powerful quasi-resonant radiation. Although models of
this type are only simple approximations to a real polyatomic molecule, they do
provide a physical basis for describing a variety of the features of such multi-
Quantum processes, and a qualitative picture for their interpretation. The major
results cf this field to date are summarized in Chap.5 by Cantrell, Letokhov, and
Makarov.

In a condensed medium the relaxation time of the phase memory (i.e., phase co-
herence) induced by an intense optical field is extremely short, in the picosecond
range. Neverthe]ess, progress in generating intense ultrashort laser pulses [1.18]
has made possible systematic studies of coherent interactions between picosecond
laser pulses and molecular vibrations. The method first used for this purpose
[1.19) has proved to be the most‘productive. In this approaéh the sample is simul-
taneously ‘irradiated by two coherent collimated ultrashort 1ight pulses, their
frequency difference being exactly equal to the molecular vibratignal frequency.
This induces Raman-type excitation of the N molecules contained in a coherent inter-
actign volume. An ultrashort pulse of variable delay then probes fhe state of the
system as it decays. Both the intensity and direction of the scattered probe pulse
can be studied. Because of the coherent nature of the interaction between the
excitation and probe pulses, the interaction efficiency for short delay (< phase
memory time) is proportional to NZ, and depends on the relative orientation of the
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wave vectors of the exciting and probe fields. As the molecular vibrations dephase,
however, the interaction becomes incoherent, leading to isotropic efficiency pro-
portional only to N, These features make it possible to separate coherent and in-
coherent processes occurring on a picosecond time scale. Furthermore, since the
details of the dephasing process depend on the extent of inhomogeneous broadening
of the vibrational transition and its internal strucfure, picosecond pulse tech-
niques can be used to study these features. Recent progress in the field of coherent
picosecond interactions is reviewed in Chap.6 by Laubereau and Kaiser.

The interaction of an ensemble of molecules with two laser fields offset in
frequency can give rise to two-quantum Raman transitions. This nonlinear process
had led to an important spectroscopic technique, coherent Raman spectroscopy.
Although a comprehensive review of this field appeared in 1977 [1.20], hany impor-
tant advances in the basic method, coherent antistokes Raman spectroscopy (CARS),
have since occurred. These new developments are presented in Chap.7 by Levenson
and Song. In contrast to [1.20], Chap.7 describes the steddy-state aspects of the
Raman scattering process, rather than the transient ones. In this regime the pulse
duration of both exciting and probe fields is long compared to the phase memory
relaxation time, Tz, (or even cw), hence excitation and interrogation processes
occur simultaneously. Thus, coherence must be maintained at all times by the
applied fields. Taken together, Chaps.6 and 7 form a comprehensive review of co-
herent Raman processes under transient and steady-state conditions.

In summary, the contributions to this volume cover recent advances in three
major areas of coherent nonlinear optics, coherent resonance effects (Chaps.2 and
3), multiphoton resonant processes (Chaps.4 and 5), and coherent Raman processes
(Chaps.6 and 7). It is hoped that these reviews will serve as useful summaries of
recent developments, and perhaps stimulate new advances in the field.
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