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_Preface

#
As a result of the numerical simulation of multidimensional gas dynamics
problems on a computer, the output information is obtained in the form of
immense arrays of numerical data. In this connection, there arises the problem
of extracting the actually needed information from these arrays; in other
words, it is necessary to solve the problem of information compression. In
particular, the numerical solution of gas dynamics problems often aims at the
information on the solution singularities—the shock waves, contact interfaces,
slip lines, etc. Our book is devoted to the development and investigation of
accuracy of the algorithms for the localization of such singularities. In addi-
tion, the questions of development of the algorithms for the classification of
singularities into several types (on the basis of shock-capturing numerical
solutions of two-dimensional gas dynamics problems) are considered for the
first time in the monographic literature. For this purpose, some ideas and
methods of the modern theory of digital-image processing and of the pattern
recognition theory are used. The information obtained at the output of the
systems of the singularities classification presented in this book is rich in
content, because it contains both physical and geometrical characteristics of
recoguized objects. Therefore, such “intellectual” systems of information ex-
traction may be used in the expert systems of automated design of aero-
dynamic bodies which meet some optimality requirements. This is, in our
opinion, very attractive from the point of view of applications.

The methods of differential approximation, variational calculus, and nu-
merical optimization have been used in the studies of accuracy of the well-
known algorithms for the localization of singularities, as well as the new
algorithms proposed by the present authors.

We have aimed at a balanced presentation of the material, therefore, the
applications of developed algorithms of the singularities localization to the
analysis of various two-dimensional fluid mechanics problems have been
included in the book along with the thenretical results. In particular, we have
considered problems of high-velocity impact, transonic flow around an airfoil,
hypersonic flow around a nonconvex body, etc.

We express our gratitude to the research workers of the Department for
Numerical Methods of Continuum Mechanics of the Computing Center of
the US.S.R. Academy of Sciences, Siberian Branch, and to professional
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colleagues from the Institute of Theoretical and Applied Mechanics of the
U.S.S.R. Academy of Sciences, Siberian Branch, in whose collectives the work
had been discussed. Our opinions and points of view were also affected by the
interaction with collectives headed by A.N. Tikhonov, L.V. Ovsyannikov.
The discussions with Yu.A. Berezin, Yu.M. Davydov, V.M. Fomin, A.N.
Konovalov, B.G. Kuznetsov, V.A. Novikov, V.V. Pikalov, N.G. Preobrazhen-
skii, B.L. Rozdestvenskii, V.V. Rusanov, Yu.l. Shokin, A.F. Voyevodin, Yu.S.
Zavyalov were especially useful to us. We are very grateful to the editor of the
English language gdition of this book, V.V. Rusanov, for his careful editing of
the manuscript. ’

We also express our thanks to Professor K.G. Roesner from Darmstadt,
F.R.G., who immediately recommended our book to Springer-Verlag in
Heidelberg, having read the Russian edition of the book. We are grateful to
Professor W. Beiglbdck, the editor of the Springer Series in Computational
Physics, for a_a;.'-,-wing us to publish in this series, and to T.A. Alexandrova for
typing the mauuscript.
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CHAPTER |

Introduction and Necessary Notions from the Theory
of Difference Schemes for Gas Dynamics Problems

The use of electronic ccmputers in numerical simulations of gas flows with
singularities started practically immediately after the first such computers had
appeared in the 1940s [1.1], [ 1.2]. Presently, a wide application of computers
for the solution of various fluid dynamics problems has become possible,
owing to the development of powerful computers and efficient numerical
methods—and the corresponding field of science has been termed “computa-
tional fluid dynamics” [1.3], [1.4]. )

In the course of mathematical modeling of many fluid dynamics problems
one often has to deal with the solutions containing singularities of various
types. For example, in the problems of inviscid compressible gas dynamics
there are singularities of shock wave and contact discontinuity type [1.5], in
the filtration problems there are saturation fronts [1.6]. In combustion prob-
lems one has to deal with flame fronts [ 1.7}, in turbulence theory with coherent
structures [1.8], in meteorology problems with atmospheric fronts [1.9],
in magnetohydrodynamics with magnetohydrodynamic shock waves {1.10],
[1.11], etc. At present, finite-difference shock-capturing schemes are widely
used for the numerical investigation of such problems. In the numerical
solutions obtained with the aid of such schemes the discontinuities are ap-
proximated by some transition regions, the size of which (in the direction of
a normal to the discontinuity surface) is usually equal to several intervals of
a spatial computing mesh. As a result of this it proves difficult to effectively
use and interpret the numerical data obtained and, in addition, there arises
the problem of increasing the accuracy of difference solutions in the neighbor-
hood of discontinuities. In particular, a research worker dealing with shocked
gas flows is in many cases interested primarily in the information on shock
surfaces: their disposition, shape, propagation speed, etc.

In connection with the foregoing there exists a need, in the development
and foundation of specialized algorithms, to process the numerical results of
solving fluid dynamics problems which are intended for the localization of
discontinuity surfaces in a flow and for their classification into several types

'(shock waves, contatt interfaces, etc.).

A problem of development of the singularities localization techniques on
the basis of finite-difference solutions is closely related to increases in the
accuracy of numerical solutions in the vicinity of discontinuities. Localization
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of strong discontinuities is substantially facilitated if ors uses, in computa-
tions, a finite-difference method which enables one to reduce the width of a
zone of discontinuity “smearing” to the size of one mesh interval. In this case
it is possible to use, for shock localization, the already existing simplest
procedures, for example, by maximum coalescence of isolines (for example,
isochors) or by maximum gradients of any of the functions sought which
undergo a discontinuity.

The structure of shock localization algorithms will also be affected by a
further increase in the performance of computers. For example, a considerable
increase in the computer core memory, as well as the use of parallel processors,
enables one to use substantially finer meshes. Then the accuracy of deter-
mining the location of a discontinuity within the zone of its “smearing” is not
so important as in the case of crude meshes, and it will then be possible to
successfully apply the simplest procedures for the numerical shock localiza-
tion. On the other hand, a manual processing of the results (and even a simple
survey of them) becomes difficult with the increase in the number of grid
points. Computer methods of processing can substantially aid the researcher
in the interpretation of numerical results in this case. They also facilitate
substantially the computer generation of pictures of temporal evolution of
various singularities in cases when such pictures are of primary importance.
If the solution accuracy in the neighborhood of discontinuities, which is
achieved in the case of using a specific difference scheme, is insufficient, then
the informaton on the singularities locaton may be incorporated directly into
a computational algorithm to achieve an increase in the accuracy of computa-
tion (see Chapters 2, 3, and 6).

In addition, the localization of discontinuities, in particular, the ones arising
in the process of computation, gives an opportunity of an active control of
this process which may include, for example, the alteration of some boundary
conditions, a switch to another construction of a difference grid or to another
difference scheme, etc.

Mathematical models of the above-listed various problems of fluid dy-
namics are characterized by different levels of complexity. In our monograph
we analyze a wide spectrum of algorithms for the localization and classification
of strong discontinuities in the numerical solutions of inviscid compressible
non-heat-conducting gas dynamics. This has been done for two reasons. First,
the flows with singularities of different types (being different from the ones
known in gas dynamics) are at present treated in much the same way as the
gas-dynamical shocked flows (see, for example, [1.7], [1.12], [1.13]). Second,
the results of the investigation of various algorithms for the strong disconti-
nuities localization (presented in Chapters 2-7) were obtained by the present
authors only for gas dynamics problems described by the Euler equations.
Taking the above into account, the domain of applicability of the methods
for the localization and classification of singularities on the basis of shock-
capturing numerical solutions presented below goes beyond the scope of
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inviscid gas dynamics problems. The essence of a general approach (presented
in our book) to the development and investigation of shock localization
methods based on shock-capturing computations is in the maximal use of
information on the structure of a finite-difference solution in the zone of
“smearing” of a strong discontinuity, while constructing the algorithms for
locating a true discontinuity within a zone of its numerical smearing. Aiming
at brevity of presentation, we emphasize our own results; therefore, other
algorithms of the singularities localization which are known in the literature
are mentioned only briefly at the beginning of Chapters 2 and 4. We make no
claim to completeness in the list of references where the localization algorithms
developed by other authors are presented, although we hope that we have
prescnted in this list the basic ideas and trends in the construction of the above
algorithms.

The methods of the singularities localization presented in Chapters 2-6 can
be united into one big group of methods whose realization is related substan-
tially to the use of a priori information on the orientation of shock surfaces
with respect to the axes of spatial coordinates. However, in some cases, such
informaton is absent. There are, for example, such problems, the investigation
of which is difficult to carry out by other techniques (for example, by experi-
mental techniques), and then mathematical modeling becomes the only
method of studying such complicated phenomena or processes [1.14]. The
methods for the localization and classificxtion of singularities which are
presented in Chapter 7 may prove to be very useful in the analysis of computa-
tional results of such problems. These methods do not require for their
implementation any a priori information on the presence or absence of singu-
larities in the problem under consideration, as well as on their approximate
orientation with respect to the spatial coordinate axes. The methods of
Chapter 7 use substantially the ideas and algorithms of the digital-image
processing theory and the theory of pattern recognition, and are very versatile
and universal, and which is shown in a number of examples. Since the data
obtained (which is presented in Chapter 7) at the output of a system of
extraction of information from the results of two-dimensional gas-dynamical
computations is rich in content—it contains both physical and geometrical
characteristics of recognized objects—it can be used for controlling the
process of the numerical solution of the basic problem as well as for decision-
making in the expert systems of aerodynamic automatic design [1.15], [1.16].

Results of investigation of the accuracy of methods for the localization of
singularities are illustrated by numerical computations of model problems
having exact solutions. In addition, there are demonstrated examples of those
complicated fluid mechanics problems, in the analysis of which the developed
localization algorithms: have been used. These are the high-velocity impact
problems, a transonic flow around an airfoil, supersonic flows in annular
nozzles and jets, hypersonic flow around a nonconvex body, interaction of
jets with obstacles, etc.
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This monograph rep esents the first systematic presentation of the results
of accuracy analysis of the methods for the localization of singularities on the
basis of the shock-capturing computation of gas dynamics problems. A num-
ber of new results obtained by the present authors is presented for the first

time.

1.1. Original Equations. Jump Conditions in the
Case of One-Dimensional Gas Flow

L.1.1. Divergence and Nondivergence Form of Equations

The system of differential equations governing the plane one-dimensional flow
of an inviscid compressible non-heat-conducting gas, which depends on time
t and on one Cartesian coordinate x, has the following divergence form [1.17],
[1.18]:

: dp/dt + Apu/dx = O, (1.1)
~o dpu/dt + d(p + pu?)/dx = 0; (1.2)
dp(e + u?/2)/0t + 8 pu(e + u*/2) + pul/ox = 0. (1.3)

Here p is the density, p is the pressure, ¢ is the internal energy per unit mass
of the gas, and u is the velocity in the direction of the x-axis. The four functions
P, u, p, € sought enter into the system (1.1)—(1.3). Therefore, one more equation
is necessary to complete this system. As is known, among the thermodynamical
quantities describing the gas state only:the two quantities are independent, the
remaining quantities can be expressed in terms of two chosen independent
functions with the aid of an equation of state [1.18]. In particular, let the
equations of state be given in the form

p=G,S), T=T(VS), (1.4)

where V is the specific volume, V = 1/p, S is the entropy, and T is the gas
temperature. Then the specific internal energy ¢ may be calculated as a
function of the variables V, S, with the aid of a thermodynamical identity
de + pdV = T dS. Knowing the dependencies of the quantities pand e on V
and S, we can compute the pressure p as a function of p, ¢:

p=Fip,e. (1.5)

Thus, in the case when the equation of state can be given in the form (1.5),
the system of equations (1.1)-(1.3) is closed without using the entropy S.
In the following we shall assume the presence of a dependency (1.5) or of a
dependency

e=f(p, p). (1.6)



1.1. Original Equations. Jump Conditions 5

Of course, the functions f and F are such that the identity

p = F(p, f(p, ) (1.7)
takes place. The ideal gas equation of state
p=(— Dpe (1.8)

is one of the simplest equations of state, where the quantity y is the ratio of
specific heat, usually y = const > 1.
- In the following we shall often use a vector notation of the system (1.1)—(1.3).

Introduce the column vectors R

p pu
u=|pul, @u=| p+pu’ | (1.9)
pE pu + puE
where »
E=c¢+u??2, (1.10)

that is, E is the total energy per unit mass of the gas. Then the system (1.1)—(1.3)
may be written in the form

du/dt + de(u)/dx = 0. (1.11)

The system (1.11) is the divergence, or conservative, form of the Euler equa-
tions. We shall also need a nondivergence form of the system (1.1)-(1.3). Set

U ¢,
U=1ul, =102
us @3

where .
U, =p, u, = pu, u; = pE;

Py = pu = Uy,
@, = p + pu? = F(uy, (us/u;) — 0.5(uy/u,)?) + us/u,,
@3 = F(uy, uy/u; — 0.5(u2/u1)2)(u2/u1) + uyus/uy,

F(p, ¢) is the function entering the equation of state (1.5). Then the elements
of the Jacobi matrix

(1.12)

A = d¢/du . (1.13)

are determined by the formulas a,,, = 0¢,/0u,,. In the case when the equation
of state (1.5) is employed to complete the system (1.1)—(1.3), the elements g,
have the following expressions (see, for example, [1.19])

a;,, =0; a;,=1; a,;=0;
ay, =0+ rz — u?; a,, = u(2 — z); a,; = z; (1.14)

|

ay; = —u(E+m—0—rz);, a3y =E+m—u*z; ay;=uz,.
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In formulas (' 14) r = u®> — E, z = (1/p) dp/de, z, = 1 + z, § = Op/dp, and
m = p/p. With the use of the matrix A (1.13) the nondivergence form of the
system (1.11) may obviously be written as

du/0t + A(u) 6u/dx = 0. (1.15)
As is known, the eigenvalues 4,, 4,, 4; of the matrix 4 have the form
Ah=u~—cg, A, =u, Ay=u+c¢, (1.16)

where ¢ is the adiabatic speed of sound. In the case of the equation of state
(1.5) the square of the speed of sound is calculated by the formula

c® = (p/p?) 0F/dc + OF/dp.
Thus, if the function F(p, €) in the equation of state (1.5) satisfies the inequality
(p/p?) OF /0 + 0F /dp > 0, (1.17)

then the equation system (1.15) is of hyperbolic type. It is assumed in the
following that the equations of state employed satisfy the inequality (1.17).
The matrix 4 whose elements are determir=d by formulas (1.14) also possesses

the following property [1.18]:
(A — ul)**! = 24 — ul),
(1.18)
(A — ul)®**2 = ¢4 — ul)?, k=0,1,2,...,

where I is the unit matrix and c is the speed of sound.

1.1.2. Jump Conditions

Let Q be an arbitrary subdomain with the boundary I in the (x, ¢)-plane which
is in the domain of definition of the system (1.11) solution. Then the integral
conservation laws for the system (1.11) have the form

§udx—¢(u)dr=o. (1.19)
r >

Unlike the system (1.1)-(1.3), the relationships (1.19) are also valid for dis-
continuous solutions. Let us derive the conditions which are to be satisfied
along the discontinuity lines of the solutions of gas dynamics equations as
consequences of the integral conservation laws. Let x = x,(t) be the equation
of one of the lines of the jump in hydrodynamic quantities, and let the function
f(x, t) undergo a jump across the line x = x,(t). Denote by

.fl (t) = f(X,(t) - 0’ t)a fz(‘) = f(xs(t) + 0’ t);
1= L0 - £
Let the discontinuity propégate at a speed dx,/dt = D. Consider in the (x, t)-

(1.20)
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plane a closed contour, two lines of which adhere with an infinite proximity
to some segment of the discontinuity line x(z). It follows from the conservation
laws written for this contour that along the discontinuity line

j(["]D — [ow])dr =0,

where the integrals wre taken along any segment of the discontinuity line. By
virtue of an arbitrary choice of the integration domain, the relationships

{ulD = [¢(u)] (1.21)

are valid at each point of a discontinuity which relate the jumps of hydro-
dynamic quantities across the discontinuity line x = x,(r) and the speed D =
x,(t) of the discontinuity line. In the case of the Euler equation system (1.1)--
(1.3)equations (1.21) may be written with regard to (1.9),(1.10) as the following
three algebraic relations

D[p] = [pu}; (1.22)
Dlpu] = [p + pu’]; (1.23)
Dlp(e + u*/2)] = [pule + p/p + u*/2)]. {1.24)

The relations (1.22)-(1.24) are called the Rankine- Hugoniot conditions. Tak-
ing into account the notation (1.20), we can rewrite the Rankine- Hugoniot
conditions (1.22)-(1.24) in the form of equations

pa(uy — D)y = p(u; — D)= m; (1.23)
P2 + pau; — D)? = p; + py(u; — D)% (.26)
pa(uy — D)ey + py/p, + (uy — D)*/2)
= py(uy — D)(e, + p,/p, + (u, — D)% 2). (1.27)
If m(t) = 0 in equation (1.25). then this kind of discontinuity will be called

contact; if m(t) # 0, then the discontinuity will be called a shock wave. In the
case of a contact discontinuity it follows from (1.25) that

D= Uy =u; = X;(f),

that is, the discontinuity line coincides with the particle trajectory. Assuming
u; = D, u, = D, we obtain from (1.26) that p, = p,. The condition (1.27) is
satisfied identically at u; = u, = D. Thus, the pressure and the speed of the
flow are continuous across a contact discontinuity in the one-dimensional gas
flow. In particular, a contact discontinuity may be an interface between two
different gases satisfying different equations of state.

In the case of a shock wave, that is, when m # 0, tne Hugoniot adiabatic
equation is obtained from (1.25)—(1.27) as an algebraic consequence [1.18]

&2 — & =120p, + p)(V; = V,), (1.28)
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where V is the specific volume, V = 1/p. Zemplén’s theorem is valid for stable
shock waves. This theorem asserts that the shock wave speed is subsonic with
respect to a gas behind the shock front, and is supersonic with respect to a
gas before the shock front.

Let the subscript 1 in (1.20) refer to a gas state behind the shock wave front,
and let the subscript 2 refer to a state before the front. Then the above assertion
(Zemplén’s theorem) may be written in the form of the following inequalities:

lu; ~ DI > c,; ju, — D] < ¢,. (1.29)

1.1.3. Riemann Problem

Concluding this section let us briefly consider the Riemann problem. An
arbitrary discontinuity is an initial state of two infinite masses of gas charac-
terized by constant parameters uy, p;, Vy,¢,, Ty and u,, p,, ¥, ¢,, T, adjoining
along the plane x = 0 at the initial time ¢ = 0. Here the magnitudes of the
discontinuity to the left and right are arbitrary and subject only to the
equations of state of the gases which may be different for the neighboring
gases. ,

The determination of the flow arising for ¢ > 0 with these initial condi-
tions ‘is called the Riemann problem, or the breakdown-of-discontinuity
problem. »

If an arbitrary discontinuity is not a contact discontinuity or a shock wave,
it decomposes by forming some configuration of stable discontinuities and
continuous gas-dynamical flows. All possible configurations of a flow arising
in the process of a breakdown of a discontinuity in the gas have been con-
sidered in {1.18], [1.20]. Here the configuration A contains a rarefaction wave
propagating into the gas “1”, and a contact discontinuity and a shock wave
propagating into the gas “2” (Figure 1.1(a)). The configuration B contains the
shock waves propagating to the left and to the right of the point x = 0, and
a contact discontinuity (Figure 1.1(b)). In configuraton C there are two
rarefaction waves and a contact discontinuity (Figure 1.1(c)). Critical values
of the parameters separating one configuraton from another have been derived
in [1.18]. Certain flow configurations, which may be called intermediate
configurations between the main configurations A4, B, C, correspond to these
critical values. For example, an intermediate configuration between configura-
tions 4 and B is the configuration consisting of one shock wave and a contact
discontinuity (Figure 1.1(d)). An intermediate configuration between con-
figurations B and C is the configuration consisting of a stagnant contact
boundary (Figure 1.1(e)) and a rarefaction wave. In the particular case of
configuration C there can occur a separation of the gases “1” and “2” from
one another, and then the rarefaction waves are separated by a region of
vacuum in which p = p = ¢ = 0 (Figure 1.1(f)).



