DESIGNING TRANSISTOR I.F. AMPLIFIERS

W. Th. H. HETTERSCHEID

DESIGNING TRANSISTOR I.F. AMPLIFIERS

W. Th. H. HETTERSCHEID

This book contains xiv + 330 pages and 138 illustrations and 96 pages two-coloured design charts, 3 folding-out tables.

Other editions of this book in Philips Technical Library in the German and French languages.

U.D.C. nr. 621.375.121: 621.382.3

© N.V. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands, 1966
All rights reserved

10.1 在 3**4 () 2**8 (17 × 2 × 2 × 2 × 2

No representation or warranty is given that the matter treated in this book is free from patent rights; nothing herein should be interpreted as granting, by implication or otherwise, a licence under any patent rights.

Printed in The Netherlands.

PREFACE

In most cases the design of I.F. amplifiers for radio, television and radar receivers involves a large amount of computational effort. This is due to the numerous requirements imposed on such an amplifier which, in most cases, are contradictory. As a consequence, a compromise must usually be found which will result in an optimum performance of the amplifier with regard to the most important specification points.

The above comments are applicable to all types of I.F. amplifier, irrespective of whether they are equipped with electron tubes or transistors. The design of transistor I.F. amplifiers, however, imposes even more problems than that of the tube counterpart. This is due to the internal feedback of the transistors, which is not negligibly small.

A transistor I.F. amplifier can, therefore, not be treated on a stage-by-stage basis as in the case of amplifiers equipped with modern penthode tubes, operating at a not too high frequency. The stage-by-stage design of a transistor I.F. amplifier is not possible because the internal feedback of the transistor in each stage affects the performance of all the other stages.

This implies that an I.F. amplifier equipped with transistors must be treated as a whole. A new parameter is therefore added to the variety of parameters which already exists with tube equipped amplifiers: this new parameter being the amount of feedback present in each stage. In this book, a method is presented which facilitates that the design of transistor I.F. amplifiers can be carried out with great ease and accuracy. The key of this design method is formed by a large number of computed "design charts" which are used in connection with a step-by-step design procedure.

These design charts contain amplitude response, envelope delay and gain characteristics, taking into account a certain set of parameters. One of these parameters is related to the amount of feedback of the transistors in the various amplifier stages. The step-by-step method of design leads to the choice of a particular set of design charts. Consultations of this set enables an accurate determination of the performance of the amplifier to be made. The design charts present moreover the information necessary for constructing the bandpass filters used as interstage networks.

The subject-matter contained in this book is based on work carried out in the Philips Semiconductor Application Laboratory at Nijmegen, The Netherlands.

The computed design charts are based on the analytical approach to amplifier design presented in the author's book "Transistor Bandpass Amplifiers".

The author wishes to express his gratitude towards his colleagues for the many discussions and the helpful suggestions. In this respect he especially wishes to mention Mr. E. J. Hoefgeest and Mr. A. H. J. Nieveen van Dijkum. For correcting the manuscript the author is indebted to Mr. W. H. Cazaly, Ilford, England.

March, 1966

The Author

Chapter 1	INTRODUCTION	1
Chapter 2	THE DESIGN SPECIFICATION OF I.F. AMPLIFIERS	5
2.1	Gain	5
	2.1.1 Gain Specifications of an I.F. Amplifier for a	
	Television Receiver	6
	2.1.2 Gain Specification of an I.F. Amplifier for a	
	Radio Receiver	8
	2.1.2.1 F.M. Receivers	8
2.2	2.1.2.2 A.M. Receivers	8
2.2	Amplitude Response Characteristic	9
	2.2.1 Radio Receivers	9
	2.2.2 Television Receivers	9
2.3	Envelope Delay Characteristic	11
Chapter 3	SPREADS, TOLERANCES AND VARIATIONS IN	
3.1	I.F. AMPLIFIERS	12
J.1	- stations of the course of bottations from	10
	Nominal Conditions	12
	3.1.2 Tolerances	12
	3.1.3 Variations	13
3.2	Combination of Deviations from Nominal Conditions of	13
	Various Devices in Designing I.F. Amplifiers	13
	3.2.1 Method of Combining Various Deviations	13
3,3	Spreads. Tolerances and Variations Encountered in I.F.	14
	Amplifier Design	15
		13
Chapter 4	TRANSISTOR PARAMETERS	17
4.1	Admittance Parameters	17
4.2	Transistor Parameter Nomenclature	19
4.3	Dependence of Transistor Admittance Parameters on	
	Operational Conditions	20
4.4	Dependence of Transistor Admittance Parameters on	٠,
	Frequency	20
	4.4.1 Dependence of Input Admittance on Frequency	21

	4.4.2 Dependence of Reverse Transfer Admittance on
	Frequency
	4.4.3 Dependence of Forward Transfer Admittance
	on Frequency
•	4.4.4 Dependence of Output Admittance on Frequency
4.5	Dependence of Transistor Admittance Parameters on
	Voltage and Current
	4.5.1 Dependence of Input Admittance on Voltage and
	Current
	4.5.2 Dependence of Reverse Transfer Admittance on
	Voltage and Current
	4.5.3 Dependence of Forward Transfer Admittance on
	Voltage and Current
	4.5.4 Dependence of Output Admittance on Voltage
	and Current
· 4.6	Dependence of Admittance Parameters on Temperature
4.7	Dependence of Derived Transistor Quantities on Fre-
	quency, Voltage, Current and Temperature
4.8	Spreads in Transistor Admittance Parameters
Chapter 5	SURVEY OF I.F. AMPLIFIER DESIGN THEORY
5.1	Stability
	5.1.1 Single-Stage Amplifier with Two Single-Tuned
1	Bandpass Filters
	5.1.2 Multi-Stage Amplifier with Single-Tuned Band-
	pass Filters
	5.1.3 Single-Stage Amplifier with Two Double-Tuned
	Bandpass Filters
	5.1.4 Multi-Stage Amplifiers with Double-Tuned
•	Bandpass Filters
	5.1.5 Basic Boundary of Stability
5.2	Alignment
5.3	Amplification
5.4	Response Curve
5.5	Resumé
Chapter 6	NEUTRALIZATION
Chapter 7	AUTOMATIC GAIN CONTROL OF TRANSISTOR
	I.F. AMPLIFIERS
71	Danisana Cuin Cura-1

CONTENTS	IX

7.2	Forward Gain Control	66
7.3	Comparison of Signal Handling Capability of Reverse	
	and Foreward Gain Control	68
7.4	Effects of Input and Output Admittance Variations on	
	the Response Curve	71
Chapter 8	PRACTICAL DESIGN METHOD FOR I.F. AMPLI-	
•	FIERS	72
8.1	Transistor Parameters Required for the Design	72
8.2	The Regeneration Coefficient	73
8.3	Limit Imposed on the Regeneration Coefficient by the	, 5
	Stability Requirement	73
	8.3.1 Amplifier without Neutralization	74
	8.3.2 Amplifier with Neutralization	74
8.4	Limit imposed on the Regeneration Coefficient by the	/4
0.4	· · · · · · · · · · · · · · · · · · ·	75
	•	75 76
	- Land Land Land Land Land Land Land Land	76
	8.4.1.1 Spreads in g_{22}	76
	8.4.1.2 Spreads in g_{11}	77
	8.4.1.3 Combined Effect of Spreads in g_{22} and	
	<i>g</i> ₁₁ · · · · · · · · · · · · · · · · · ·	77
	8.4.1.4 Spreads in C_{22} and C_{11}	77
•	8.4.2 Amplifiers with Single-Tuned Bandpass Filters	79
	8.4.2.1 Influences of Spreads in g_{11} and g_{22}	79
	8.4.2.2 Effects of Spreads in C_{11} and C_{22}	80
	8.4.3 Summary of Remarks on the Regeneration	
	Coefficient	81
8.5	The value of q^2	81
8.6	The Gain	81
	8.6.1 The Transducer Gain of the Complete Amplifier	85
	8.6.2 The Power Gain per Stage of the Amplifier	88
	8.6.3 The Voltage Gain per Stage of the Amplifier	94
	C	,
Chapter 9	EXAMPLES OF AMPLIFIER DESIGN	98
9.1	An I.F. Amplifier for an A.M. Radio Receiver	98
	9.1.1 Regeneration Coefficient Determined by Stability	99
	9.1.2 Regeneration Coefficient Determined by	,,
	Response Curve Requirements	99
	9.1.3 Definite Choice of the Regeneration Coefficient	100
	Choice of the Regeneration Coefficient	100

	9.1.4	Design of the Double-Tuned Bandpass Filters . 100
	9.1.5	The 3 dB Bandwidth 101
	9.1.6	Adjacent Channel Selectivity 101
	9.1.7	Transimpedance 101
	9.1.8	Complete Circuit Diagram 102
9.2	An I.	F. Amplifier for F.M. Receivers with Double-
	Tuned	Bandpass Filters
	9.2.1	General Design Considerations 103
	9.2.2	Regeneration Coefficient Determined by Stability 104
	9.2.3	Regeneration Coefficient Determined by Respon-
		se Curve Requirements 104
	9.2.4	Design of the Double-Tuned Bandpass Filters 105
	9.2.5	The 3 dB Bandwidth 107
	9.2.6	The Adjacent Channel Selectivity 107
	9.2.7	The Envelope Delay 107
	9.2.8	Gain
		9.2.8.1 Transducer Gain 108
		9.2.8.2 Gain per Stage 108
	9.2.9	Complete Circuit Diagram
9.3	A Coi	mbined I.F. Amplifier for an A.M./F.M. receiver 111
	9.3.1	General Design Considerations of the Combined
		I.F. Amplifiers
	9.3.2	I.F. Amplifier for F.M 114
		9.3.2.1 Determination of Regeneration
		Coefficient 114
		9.3.2.2 Design of the Double-Tuned Bandpass
•		Filters
	•	9.3.2.3 Gain and Frequency Response 115
	9.3.3	I.F. Amplifier for A.M
		9.3.3.1 Effects of the Emitter-Decoupling
		Capacitor 116
		9.3.3.2 Design for Stability 116
		9.3.3.3 Gain and Frequency Response 120
	9.3.4	Complete Circuit Diagram 120
9.4	A Sele	ective Amplifier for 35 Mc/s 120
	9.4.1	Regeneration Coefficient
	9.4.2	The Output Stage of the Amplifier 122
		9.4.2.1 Collector Circuit
•		9.4.2.2 Base Circuit
	9.4.3	Transducer Gain of the Complete Amplifier 124

XI

	9.4.4 Power Gain of Stage 2	125
	9.4.5 Power Gain of Stage 3	126
	9.4.6 Power Gain of the Input Stage	126
	9.4.7 Amplitude Response Curve	127
	9.4.8 Dimensioning of the Tuned Circuits	128
	9.4.8.1 Circuit 1	128
•	9.4.8.2 Circuit 2	128
	9.4.8.3 Circuits 3, 5 and 7	128
	9.4.8.4 Circuits 4 and 6	128
	9.4.8.5 Parasitic Effects Due to Capacitive Taps	129
	9.4.9. Complete Circuit Diagram	129
Chapter 10	EXAMPLE OF AMPLIFIER DESIGN TAKING	•
	INTO ACCOUNT DEVIATIONS FROM NOMINAL	
	CONDITIONS	130
10.1	General	130
10.2	Choice of Transistor Biasing Points	131
10.3	Design for Nominal Conditions	132
	10.3.1 Neutralization	132
	10.3.2 Determination of Bandpass Filter Parameters	133
	10.3.3 The Biasing Networks of the Various Transistors	134
,	10.3.4 The Output Stage	135
	10.3.4.1 The Output Circuit	135
	10.3.4.2 The Input Circuit	137
	10.3.4.3 Stability	137
	10.3.5 The Second Stage	138
	10.3.5.1 The Damping Ratios	138
	10.3.5.2 Stability	138
	10.3.6 The Input Stage of the Amplifier with Reverse	138
	A.G.C	138
	10.3.6.1 The Damping Ratios	139
	10.3.6.2 Stability	139
;	10.3.7 The Input Stage of the Amplifier with Forward	
	A.G.C	139
	10.3.7.1 The Damping Ratios	139
	10.3.7.2 Stability	139
	10.3.8 The Input Double-Tuned Bandpass Filter	139
	10.3.9 The Gain of the Amplifier	140
	10.3.9.1 The Output Stage	140
	10.3.9.2 The Second Stage	141

	10.3.3.3 The input stage of the Ampanier with	
	Reverse A.G.C	141
	10.3.9.4 The Input Stage of the Amplifier with	
	Forward A.G.C	141
	10.3.9.5 The Input Double-Tuned Bandpass Fil-	
	ter	141
**	10.3.9.6 The Gain of the Complete Reverse	
	A.G.C. Amplifier	141
	10.3.9.7 The Gain of the Complete Forward	
	A.G.C. Amplifier	142
10.4	Complete Circuit Diagram	143
10.5	Measurements	145
	10.5.1 The Reverse A.G.C. Amplifier	145
*	10.5.1.1 The Amplitude Response Curve	145
	10.5.1.2 The Gain	149
	10.5.1.3 Dependence of Gain on Ambient Tem-	
	perature	150
	10.5.1.4 Dependence of Gain on the Supply	
	Voltage	151
	10.5.1.5 Linearity of the Amplifier	151
•	10.5.1.6 Further Measurements	151
	10.5.2 The Forward A.G.C. Amplifier	152
	10.5.2.1 The Amplitude Response Curve	152
•	10.5.2.2 The Gain	154
	10.5.2.3 Dependence of Gain on Ambient Tem-	
	perature	157
	10.5.2.4 Dependence of Gain on Supply Voltage	157
	10.5.2.5 Linearity of the Amplifier	158
	10.5.2.6 Further Measurements	158
	•	
Chapter 11	DESIGN EXAMPLES OF INCORPORATING	
-	SPREADS — THE CHOICE OF AN A.G.CSYSTEM	
	FOR AN I.F. AMPLIFIER OF A TELEVISION	
	RECEIVER	160
11.1	The Various Signal Levels in I.F. Amplifier and Tuner	163
	11.1.1 The Permissible Signal Levels	163
11.2	Spreads, Tolerances and Operational Variations	164
11.3	Data of the I.F. Amplifier and the Tuner	166
	11.3.1 The Tuner	166
11.4	Evaluation of Spread Factors	168
	<u> </u>	

CONTENTS	XIII
UNIENIS	VIII

	11.4.1 The Transistor High-Frequency Properties	168
	11.4.1.1 The Second and Third Stages of the I.F.	
	Amplifier	168
	11.4.1.2 The Input Stage of the I.F. Amplifier	168
	11.4.1.3 The Tuner	169
	11.4.1.4 The Detector Circuit	170
	11.4.2 The Dependence of Gain on Emitter Current	170
	11.4.3 The D.C. Properties of the Transistors	171
11.5	Evaluation of Resistance Tolerances	173
	11.5.1 The Second and Third Stages of the I.F.	
	Amplifier	173
	11.5.2 The Input Stage of the I.F. Amplifier	174
•	11.5.3 The Tuner	175
	11.5.4 The Reference Levels of the A.G.C. Circuit	175
11.6	Evaluation of Operational Variation	175
	11.6.1 The Contrast Control	175
	11.6.2 The Variations of Supply Voltage	176
	11.6.2.1 The I.F. Amplifiers	176
	11.6.2.2 The Tuner	177
	11.6.2.3 The Reference Levels of the A.G.C.	
	Circuits	177
	11.6.3 The Variations in Ambient Temperature	177
11.7	Combination of the Various Spreads, Tolerances and	
	Operational Variations	,177
11.8	Spreads in Gain of the I.F. Amplifiers	179
11.9	mpm . cruge of the views Depotor	185
	The Possible A.G.C. Range of the I.F. Amplifier	186
	The Overall Gain of Tuner and I.F. Amplifier	187
	Spreads in Overall Gain of Tuncr and I.F. Amplifier	188
	Possible Delay of A.G.C. Cross-Over Point	189
•	11.13.1 The Mixer Stage	189
	11.13.2 The R.F. Stage	190
11.14	The Choice of the Nominal Cross-Over Point	191
Chapter 12	THE EFFECTS OF SPREADS IN TRANSISTOR	
40.4	ADMITTANCE PARAMETERS	193
12.1	Amplifier Determinants with Spreads in Transistor Para-	
	meters	193
	12.1.1 Input-Damping Spread Factor	194
	12.1.2 Output-Damping Spread Factor	194

	12.1.3 Input-Tap Spread Factor	194
12.2	Transistor Regeneration Coefficients	196
12.3	The Coefficient of Coupling of the Double-Tuned Bandpass Filters	197
12.4	The Normalized Admittances of the Tuned Circuits	198
12.5	Survey of Terms of the Interchangeability Determinant	199
12.6	Results of an Interchangeability Analysis	200
Chapter 13	EXAMPLE OF CALCULATING THE GAIN PER-	
	FORMANCE OF AN I.F. AMPLIFIER FOR A	
	TELEVISION RECEIVER	202
13.1	Description of the Amplifier	202
13.2	Gain Calculation	208
13.3	Performance Measurements	212
Chapter 14	STEP-BY-STEP METHOD OF DESIGNING I.F. AMPLIFIERS	213
~ 1		
Chapter 15	DESIGN CHARTS	228
15.1	Choice of Tuning method	229
15.2	Survey of Design Charts	229
15.3	Single-stage amplifier with two-double tuned bandpass filters	235
15.4	Two-stage amplifier with three double-tuned bandpass	
	filters	243
15.5	Three-stage amplifier with four single-tuned bandpass filters	251
15.6	Four-stage amplifier with five single-tuned bandpass	201
	filters	259
15.7	Three-Stage amplifier with four double-tuned bandpass	
	filters	267
15.8	Four-stage amplifier with five double-tuned bandpass	
	filters	283
15.9	Three-stage amplifier with three double-tuned and one	
•	single-tuned bandpass filters	299
15.10	Four-stage amplifier with four double-tuned and one	
	single-tuned bandpass filters	315

INTRODUCTION

An intermediate-frequency amplifier as used in radio, television and radar receivers provides the greater part of the high-frequency gain of the whole system and almost entirely determines the amplitude and phase response characteristics. The I.F. amplifier therefore largely governs the total performance. For these reasons a great deal of attention is usually given to the design of such an amplifier.

Often the design of an I.F. amplifier is laborious because of the large number of requirements and conditions that must be taken into account. This applies especially to amplifiers in which transistors are used as amplifying elements, when problems arise associated with the internal feedback of the transistors. (In amplifiers equipped with modern electron tubes, interelectrode feedback offers few difficulties provided that no extra feedback is introduced by the arrangement of components and wiring.)

In this book a systematic method is developed which facilitates the design of transistor I.F. amplifiers by making use of a large number of computed amplifier design charts.

The heart of the design method lies in the determination of proper values of the regeneration coefficients of the transistors in the various stages of the amplifier. The "regeneration coefficient" is a quantity dependent on the admittance parameters of a transistor and on the admittances of tuned circuits at its input and output terminals. The relative values of the regeneration coefficients of the transistors in the various stages largely affect the performance of the amplifier.

The various phases of the design procedure are schematically illustrated in the block diagram in Fig. 1.1. From the specification of performance requirements of the amplifier and data concerning the transistors to be employed, a choice is made of the amplifier configuration (arrangement of transistors and single-tuned and/or double-tuned bandpass filters) and the number of stages needed.

With the amplifier configuration and the number of stages known, use can be made of a series of design charts. From these design charts amplitude response and envelope delay characteristics can be derived. Taking into account the relevant items of the design specification a certain group of curves

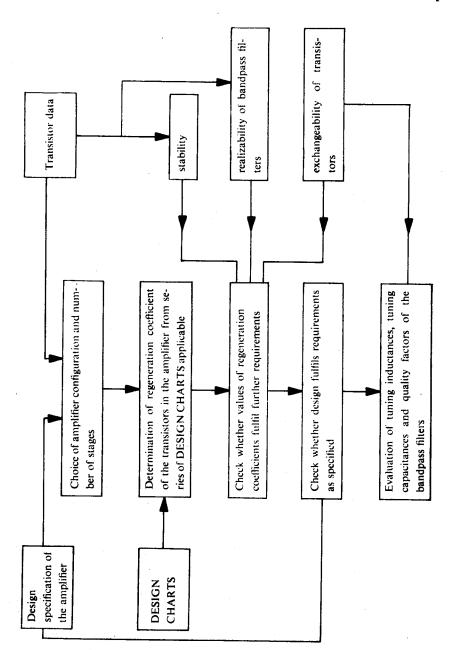


Fig. 1.1. Block diagram indicating various stages of the step-by-step method of designing I.F. amplifiers.

can be selected, valid for a particular value of the regeneration coefficient in the amplifier.

The value of the regeneration coefficient obtained from the design charts fulfils most of the requirements for designing the amplifier. Further checks, however, must be made regarding stability, interchangeability of transistors of the type chosen, and realizability of the bandpass filters to be used. A value of regeneration coefficient should be chosen which meets all requirements.

When the final values of the regeneration coefficient of the various transistors of the amplifier are arrived at, the most important part of the design procedure will have been completed, provided all specified design requirements are fulfilled. Whether this is the case or not can now be checked in detail.

The last part of the design procedure consists of the practical design of the various bandpass filters of the amplifier.

The design procedure described has been fully set out in Chapter 13, which contains a step-by-step method for designing I.F. amplifiers. To facilitate design, the results of the various steps can be entered in a systematically arranged form, as shown on a fold-out page at the end of the book.

The step-by-step method shown includes in condensed form the considerations on various aspects of amplifier design dealt with in Chapters 2 to 8 inclusive.

In Chapter 2 design specifications of gain, amplitude response, and envelope delay characteristics for various types of I.F. amplifier are considered. It is argued that specifications should comprise not only nominal values of items but also acceptable spreads of values.

Spreads in performance that occur in a series of practical amplifiers arise from the use of active and passive components, the parameters of which are subject to production spreads.

The spreads in the admittance parameters of the transistors (or other active devices) as well as in the values of the components are usually specified by the manufacturer.

In Chapter 3 is discussed how the various spreads are taken into account to obtain a true picture of actual performance spreads.

In Chapter 4 are considered the small-signal admittance parameters of the transistors required and their dependence on biasing point, operating frequency, and ambient temperature.

The design of biasing circuits is not included in this book, since the subject is adequately treated in several works on transistor circuits.

The method of design of I.F. amplifiers presented here is based on the

theoretical considerations set out in the book "Transistor Bandpass Amplifiers", which is in the present work referred to as Book I.*

In Chapter 5 (of the present work) a survey is given, for ease of reference and to facilitate its use, of the theory of I.F. amplifier design, which contains sundry references to relevant sections in the first-mentioned Book 1.

In Chapter 6 a short account is given of neutralization of the internal feedback of transistors. In some instances neutralizing networks may considerably improve the performance of the amplifier.

In Chapter 7 are discussed problems of gain control in I.F. amplifiers.

Chapter 8 presents further considerations related to the development of the step-by-step method of designing practical I.F. amplifiers.

Chapters 9, 10, 11 and 12 give examples of the design of I.F. amplifiers.

In Chapter 9 examples of the design of I.F. amplifiers for radio receivers for A.M. and F.M. signals are presented.

In Chapter 10 examples of the design of l.F. amplifiers for television receivers are given.

In Chapter 11 the spreads in performance of the amplifiers designed in Chapter 10 are evaluated as they affect the choice of an A.G.C. system.

Chapter 12 presents an example of a theoretical method of calculating the spreads in performance that may occur in a vision I.F. amplifier due to spreads in the admittance parameters of the transistors.

Chapters 11 and 12 show how individual spreads of transistors and components should be evaluated and combined in order to obtain a realistic picture of the overall spread in the performance of an amplifier.

Chapter 13 shows a further example of the design of a vision I.F. amplifier. Chapter 14 presents the step-by-step method of I.F. amplifier design and Chapter 15 contains the design charts referred to above.

^{*)} W. Th. H. HETTERSCHEID, Transistor Bandpass Amplifiers, Philips Technical Library, Eindhoven, 1964.