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Preface

Every mathematician must know the conversation-stopping nature of
the reply he gives to an inquiry by a non-mathematician about the
nature ofjus business. For a logician in the company of other mathema-
ticians to admit his calling is to invite similarly blank looks, admissions
of ignorance, and a change in the topic of conversation. The rift between
mathematicians and the public is a difficulty which will always exist
(though no opportunity should be missed of narrowing it), but the rift
between logicians and other mathematicians is, in my view, unnecessary.
This book is an attempt to bridge the gap by providing an introduction
to logic for mathematicians who do not necessarily aspire to becoming
logicians.

Mathematical logic is now taught in many universities as part of an
undergraduate course in mathematics or computing, and the subject is
now coherent enough to have a standard body of fundamental material
which must be included in any first course. This book is intended to be a
textbook for such a course, but also to be something more — to be a book
rather than merely a textbook. The material is deliberately presented in
a direct manner, for its own sake, without particular bias towards any
aspect, application or development of the subject. At the same time the
attempt has been made to place the subject matter in the context of
mathematics as a whole and to emphasise the relevance of logic to the
mathematician.

The book is designed to be accessible to anyone with a mathematical
background, from first year undergraduatc to professional mathcmatl-
cian, who wishes, or is required, to find out something of what mathe-
matical logic is. A certain familiarity with elementary algebra and
number theory is assumed, and since ideas of countable and uncount-
able sets are fundamental, there is an appendlx in which the necessary
properties are described.

The material of the book is developed from that presentied in two
separate courses of sixteen lectures at the University of Stirling to
students in their third and fourth years of undergraduate study. The first

* of these covered Chapters 1 to 4 with some of Chapter 5, and the second
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was a more advanced optional course covering the remainder. Chapter 6
is the most difficult in the book, but the significance of Godel’s In-
completeness Theorem is such that the ideas behind the proof ought to
be brought out in a book of this kind. The detailed proofs may be
omitted on first reading, as the material of Chapter 7 does not depend
on them.

The scope of this book is more limited than that of other standard
introductions to the subject. In particular the theory of models and the
axiomatic theory of sets are barely touched on. The interested reader is
therefore referred to the list at the end of the book of titles for further
reading. Some of these are specifically referred to in the text (by the
author’s name), and overall they provide coverage of most areas of
mathematical logic and treat in more depth the topics of this book.

There are exercises at the end of each section. Generally speaking,
routine examples precede more taxing ones, but all the examples are
intended as direct applications of the material in the corresponding
section. Their purpose is to clarify and consolidate that material, not to
extend it. Hints or solutions to many of the exercises are provided at the
end of the book.

The symbols used in the book are, as far as is possible, standard (as is
the terminology). There are some non-standard usages, however, which
have been introduced in order to achieve clarity. These ought not to
trouble the reader who is familiar with the material, and are intended to
help the reader who is not. It is.an unfortunate fact that different authors
do use different notations and symbolism. For this reason, and for ease
of reference, a glossary of symbols is included. Throughout the text the
symbol > is used to denote the resumption of the main exposition after
it has been broken by a proposition, example, remark, corollary or
definition. :

Finally there are four debts which I wish to acknowledge. First, my
debt to the book by Mendelson (Introduction to Mathematical Logic)
will be apparent to all who are familiar with it. As a basic text for
logicians it has had few rivals. Second, this book would not have been
possible but for the time made available to me by the University of
Stirling. Third, on a more personal level, I am most grateful to Francis
Bell for his conscientious reading of a draft of the text and for his
numerous valuable suggestions. And last, my sincere thanks go to Irene
Wilson and May Abrahamson for all their patient labour in typing the
manuscript.

1978 A.G.H.
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Informal statement calculus

1.1 Stateme‘nts and connectives

Logic, or at least logical mathematics, consxsts of deduction. We shall
examine the rules of deduction making use of the precision which
characterises a mathematical approach. In doing this, if we are to have
any precision at all we must make our language unambiguous, and the
standard mathematical way of doing that is to introduce a symbolic
language, with the symbols having precisely stated meanings and uses.
First of all we shall examine an aspect of everyday language, namely
connectives (or conjunctionst, which is the more common grammatical
term).

When we try to analyse a sentence in the English language, we can
first note whether it is a simple sentence or a compound sentence. A
simpl® sentence has a subject and a predicate (in the grammatical sense),
for example: :

Napoleon is dead
John owes James two pounds

All eggs which are not square are round.

In each case the subject is underlined, and the remainder is the predi-
cate. A compound sentence is made up from simple sentences by means .
of connectives, for example:

« Napoleon is dead and the world is rejoicing
If all eggs are not square then all eggs are round
If the barometer falls then either it will rain or it will sn ow.

We shall regard it as a basic assumption that all the simple sentences
‘which we consider will be either true or false. It could certainly be
argued that there are sentences which-could not be regarded as either
true or false, so we shall use a different term. We shalf refer to simple
and compound statements, and our assumption will be that all state-
ments are either true or false.

t The word ‘conjunction’ has a more specific meaning for us. It is defined in Section 1.2.
. : N )
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2 Informal statement calculus

Simple statements will be denoted by capital letters A, B, (?: ...s80in
order to symbolise compound statements we have to introduce symbols
for the connectives. The most common connectives, and the symbols
which we shall use-to denote them, are given in the table below.

notA | ~A
Aand B | AAB
AorB | AvB

ifAthenB | A>B
Aifandonlyif B { A<>B

Of course, if the meanihg of the symbols is to be defined precisely, we
must be sure that we know precisely the meanings of the expressions in
the left hand column. We shall return to this shortly.

The thr¥® compound statements above could be written in symbols
(respectively) thus:

AANB
C-D
E->(FvG)

where A stands for ‘Napoleon is dead’, B stands for ‘the world is
rejoicing’, C stands for ‘all eggs are not square’, etc.

Notice that what remains when a compound statement is symbolised
in this way is the bare logical bones, a mere ‘statement form’, which
several different stétements might have in common. It is precisely this
which enables us to analyse deduction. For deduction has to do with the
‘forms’ of the staternents in an argument rather than their meanings.

Example 1.1

If Socrates is a man then Socrates is mortal
Socrates is a man
Socrates is mortal.

This is an argument which is regarded as logically satisfactory. But
consider the argument:

Socrates is a man
Socrates is mortal.

The conclusion may be thought to follow from the premiss, but it does
so because of the meanings of the words ‘man’ and ‘mortal’, not by a
mere logigal deduction. Let us put these arguments into symbols.
A->B A
A . B
B
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It is the ‘form’ of the first which makes it valid. Any argument with the
same form would also be valid. This is our logical intuition about
if ... then...statements. However, the second does not share this
property. ’I'here are many arguments of this form which we would not
regard intuitively as valid, For example:

The moon is yellow
The moon is made of cheese.

We study, therefore, statement forms rather than particular state-
ments. The letters p, g, , . .. will be statement variables which stand for
arbitrary and unspecified simple statements. Notice the distinction be-
tween the usages of the letters p, g, r, . . . and thc letters A, B, C, . . . The
former are variables for which particular simple statements may be
substituted. The latter are merely ‘labels’ for particular simple state-
ments. The variables enable us to describe in general the properties that
statements and connectives have. Now each simple statement is either
true or false, so a given statement variable can be thought of as taking
one or other of the two truth values: T (true) or F (false). The way in
which the truth or falsity of a compound statement or statement form
depends on the truth or falsity of the simple statements or statement
variables which constitute it is the subject of the next section.

Exercises

1 Translate into symbols the following compound statements.
(a)«f demand has remained constant and prices have been increased, then
turnover must have decreased.
(b) We shall win the election, provided that Jones is elected teader of the
party.
(c) If Jones is not elected leader of thc party, then either Smith or Robinson
will leave the cabinet, and we shall lose the election.
(d) If x is a rational number and y is an integer, then 2 is not real.
(e) Either the murderer has left the country or somebody is harbouring him.
(f) If the murderer has not left the country, then somebody is harbouring
) him.
(g) The sum of two numbers is even if and only if either both numbers are
even or botl numbers are odd.
(h) If y is an integer then z is not real, provided that x is a rational number.
2 (a) Pick out any pairs of statements from the list in Exercise 1 which have
the same form.
(b) Pick out any pairs of statements from the list in Exercise 1 which have the
same meaning.




4 Informal statement calculus

1.2 Truth functions and truth tables .

Let us consider the connectives in turn.

{degation .
The negation of a statement A we write ~A. Clearly if A is true then

~A is false, and if A is false then ~A is true. The meaning of A is
irrelevant. We can describe- the situation by a truth table : -

The table gives the truth value of ~p, gi?/en the truth value of p. The
connective ~ gives rise to a fruth function, f~, in this case a function
from the set {T, F} to itself, given by the truth table, thus:

f(T)=F,
fE)=T.
Conjunction

As above, it is easy to see tRat the truth value taken by the conjunction
A A B of two statements A and B depends only on the truth value taken
by A and the truth value taken by B. We have the table:

We have i the table one row for each of the possible combinations of
truth values for p and q. The last column gives the corresponding truth
values for p Aq. The connective A thus defines a truth function f” of two
places.

fAT, T)=T,
fNT, F)=F,
fA(F’ T)=F,

fNF,F)=F.
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Disjunction

We have used A vB to denote ‘A or B, but there are two distinct
standard usages of the word ‘or’ in English. ‘A or B> may mean ‘A or B
or both’, or it may mean ‘A or B but not both’. In order to keep our
symbolic language precise we must choose only orne of these to give the
meaning of our symbol v. We choose the former. There is no particular
reason for this; we could just as well have chosen the latter. The truth
table is as follows:

The connective v defines a truth function of two places justas A did.

* ’ . . .
Remark.1f A and B aresimple staterﬁents, wecansymbolise ‘A or B butnot
both’ as ' ’ '

(AVB)A ~(A AB).

Correspondingly, if we had used ‘A or B but not both’ to define our
disjunction symbol, we could have expressed ‘A or B or both’ using that
disjunction along with A and ~.

Conditional 4 _
A - B is to represent the statement ‘A imﬁlies B’ or ‘if A then B’. Now
in this case normal English usage is not as helpful in constructing a truth
table, and the table that we use i a common source of intuitive
difficulty. It is: -

|

' pq

MmN e
NNT

p
T
T
F
F

The difficulty arises with the truth value T assigned to A- B in the
cases where A is false. Consideration of examples of conditional state-
ments in which the antecedent is false might perhaps lead one to the
conclusion that such statements do not have a truth value at all. One
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might also gain the impression that such statements are not useful or
meaningful. For example, the statement:

If grass is red then the moon is made of green cheese

could fairly be said to be meaningless.

However, we shall be interested in deduction and methods of proof,
principally in mathematics. In this context the significance of a condi-
tional statement A - B is that itsitruth enables the truth of B to be
inferred from the truth of A, and nothing in particular to be inferred
from the falsity of A. A very common sort of mathematical statement
can serve to illustrate this, namely a universal statement, for example:

For every integer n, if n >2 then n°>4.

This is regarded as a true statement about integers. We would expect,
therefore, to regard the statement

Ifn>2thenn >4

" as true, irrespective of the value taken by n. Different values of n give
rise to all possible combinations of truth values for ‘n>2" and ‘n ’>q
except the combination TF. Taking n to be 3, —1, 1 respectively yields
the combinations TT, FT, FF, and these are the combinations which,
according to our truth table, give the implication the truth value 7. The
intuitive truth of this implication is therefore some jUStIﬁCdtlon for the
truth table. The point to remember is that the only circumstance in
which the statement A » B is regarded as false is when A is true and B
is false.

Bicondit_ional

We denote *A if and only if B’ by A - B. The situation here is clear. We
should have A < B true when and only when A and B have the same
truth value (both true or both false). The truth table is then as shown.

plq[p**q
T.T T
T | F F
F|T F
F| F T

This completes our list of connectives. Obviously, compound state-
ments of any length can be built up from simple statements using these
connectives. Using statement variables we can build up statement forms
of any length.
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Definition 1.2

A statement form is an expression involving statement variables and
connectives, which can be formed using the rules:
(i) Any statement variable is a statement form.

(ii) If of and B are statement forms, then (~sf), (f A B), (A v.%),
(s > B), and (A <> B) are statement forms.

Example 1.3

((p Aq)>(~(q vr))) is a statement form. By (i), p, q, r are statement
forms. By (ii), (p Aq) and (q v r) are statement forms. By (ii), (~(q vr))
is a statement form. By (ii), ((p Aq) > (= (q v r))) is a statement form.

O This definition is an example of an inductive definition. It sets a
pattern which will occur again when we describe formal systems in
detail.

- The connectives determine simple truth functlons Using the truth
tables for the connectives, we can construct a truth table for any given
statement form. By this_is meant a table which will indicate, for any
given assignment of truth values to the statement variables appearing
in the statement form, the truth value which it takes. This truth table
is ‘a graphical representation of a truth function. Thus each state-
ment form gives rise to a truth function, the number of arguments of
the function being the number of different statement variables
appearing in the statement form. Let us lllustrate this by means of
. some examples.

Example 1.4
@  ({(~p)vq)
First construct the truth table:

p l q] (~p) J (~p)vq)
Ti{T| F T
T|F| F F
FIT| T T
F|F| T - T

. Observe that the truth function corresponding to this statement form is
the same as the truth function determined by (p - q).
®) (p(qvr).
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Truth table:
(qvr) |(p~(gvr)

K}
-~

MTMTMMNNNN | T
TN NN
NN TN TN
TN NN N NN
NNNNTN NN

The truth function here is a three place function, since there are three
statement variables. Each row of the table gives the value of the truth
function for a different combination of truth values for the letters.
Notice that there will be eight rows in the truth table of any statement
form involving three statement variables, and notice the pattern in
which the first three columns of the table above are written out. This
way of grouping the Ts and Fs under the p, g, r ensures that each
possible combination appears once and only once.

I> In the general case, for a statement form involving n different state-
ment variables (n any natural number), the truth function will be a
function of n places, and the truth table will have 2" rows, one for e¢ach
of the possible combinations of truth values for the statement variables.
Further, notice that there are 2°" distinct truth functions with n places,
corresponding to the 2°” possible ways of arranging the T's and Fs in the
last coiumn of a truth table with 2" rows. The number of statement
forms which can be constructed using n statement variables is clearly
infinite, so it follows that different statement forms may correspond to
the same truth funetion. »
To investigate this further we need some definitions.

Definition 1.5

(a) A statement form is a rautology if it takes truth value T under
each possible assignment of truth values to the statement variables
which occur in it.

(b) A statement form is a contradiction if it takes truth value F under
each possible assignment of truth values to the statement variables
which occur in it. :

> Not every statement form falls into one or other of these categories.
In fact none of those which we have considered so far does.
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Example 1.6 R
(a) (p v ~p) is a tautology.
b) (p A ~p) is a contradiction.

() (p < (~(~p))) is a tautology.
@ (((~p)»q)>(((~p)>(~¢)~>p)) is a tautology.
The method used to verify that a given statement form is either a
tautology or a contradiction is just construction of the truth table.

D> It should be clear from the definition that all tautologies containing n
statement variables give rise to the same truth function of n places,
namely that which takes value T always. We can make a similar obser-
vation about contradictions. -

Definition 1.7

If o and B are statement forms, & logically implies B if (4> %B) is a
tautology, and  is logically equivalent to & if (f & R) is a tautology.

Example | 1.8

(a) (p A q) logically implies p.
(b) (~(p A q)) is logically equivalent to ((~p) v (~q)).
(c) (~(p v q)) is logically equivalent to ((~p)a (~q))'.

For (a): truth table of ((p rq)=>p):

p .~ q@ =~ p)
T T T|T|T
T F F|TI|T
F F T |T|F
F F F|T|F
For (b):
(~ (@ ~ @ o -~ p v (~ q)
F T T T|T|F T F F T
T T F F|T{F T T T F
T F F T, |T|T F T F T
T F F F|{T|T F T T F

Here we have introduced a different way of writing the truth tables. For
complicated statement forms it is easier to construct the table this way.
Start by writing columns of T's and F's under the statement variables in
the same order as we have in previous tables, to ensure that each
combination appears once only. This must be done consistently
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throughout, of course. Next, under the connectives successively insert
the truth values of the parts, until the column giving the truth values of
the whole statement form is filled up. This column is enclosed by vertical
lines in the examples above.

Remark. Let of and B be statement forms containing the same state-
ment variables. If of and & are logically equivalent then they represent
the same truth function. For if (of «»3) is a tautology it never takes
value F, and so & and 8 must always take the same truth value. The
truth functions corresponding to & and 8 must therefore be the same.

Exercises

3 Write out the truth tables of the following Statement forms:

(a) ((~p)A(~q));

() ~(p=>q)>(~(q@-p))

(©) (p=>@q-r);

) (prg)~>r);

(e) (pe(~q9)vq);

f) (prq)v(rns)),

g) ((~p)Aq@)=>((~q)rr));

(k) (p=(g@=>n)>{(p~q)=>(p-r)).

4 Show that the statement form ((~p) v q) gives rise to the same truth function
as (p »q), and that ((~ p)->(q v r)) gives rise to the same truth function as

((~q) > ((~r)>p)).
S Which of the following statement forms are tautologies?
(@)~ (p>ig-p);
- (B) (@vr)=>((~r)>q));
() {PA(=g)vga(~=r)vra(~p))
(d) {(p=>(@->n))>{pr(~q)vr).

6 Show that the following pairs of statement forms are logically equivalent.
(a) (p>q), ((~q) > (~p));
() (pva)ar)((par)vigar));
(© {(~p) A(~g)) > (~r)), (r > (q vP));
d) {((~p)vq)=r),((pAr(~g) V7).

7 Show that the statement form (((~p)—>q)—>(p->(~q))) is not a tautology.
Find statement forms s/ and ®# such that ((~H)>R) > (A > (~B))) is a
contradiction. :

1.3 Rules for manipulation and substitution
Proposition 1.9

If of and (of > B) are tautologies, then B is a tautology.



