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' PREFACE

This book, designed for a one-year course at the beginning graduate level,
displays those properties of topological vector spaces which ‘are used by
researchers in classical analysis, differential and integral equations, distributions,
summability, and classical Banach and Fréchet spaces. In addition, optionai
examples and problems (with hints and references) will set the reader’s foot on
numerous paths such as non-locally convex (e.g., ultrabarrelled) spaces, Kothe-
Toeplitz spaces, Banach algebra, sequentially barrelled spaces, and norming
subspaces.

. The prerequisites are e laid out in Chapter 1 which is a rapid sketch of vector
spaoes and point set topology. The central theme of the book is duality, which :
is taken up in Chapter 8. In an ideal world the course would begin with this
chapter, the material of the preceding seven being known to all educated persons.
The climax is reached in Chapter 12, which presents completeness theorems in
this setting: a function space is complete when membership in it is secured by.
continuity on' a certain family of sets. (See the beginning of Chapter 12.) The
remaining three chapters treat special topics such as inductive limits, distributions,
weak compactness and barrelled spaces, by means of the tools developed in

‘Chapter 12. In partlcular the separable quotlent problem for Banach spaces
(Section 15-3), as special and as classical as it appears requires much of this
material for its fullest understanding. - :

The style is that of a° begmnlng text in whlch concepts are explained and
motivated, and every theorem is delineated by examples which show that itg
hypotheses are minimal and which illustrate how the theorem is used, how it fits
into the theory, and how it forms a step in some general program. For example,
the equivalence program is a body of results of the form P = (Q = R) where P
is a property of a space and Q, R are ‘properties of sets in its dual. [See, for

xi



xii PREFACE

example, Theorem 9-3-4(b) and (c) and the beginning of Section 9-4.] Moreover,
the book is more completely cross-referenced than most others that I have seen.

Both nets and filters are introduced and used whenever appropriate.

A set of 33 tables is given at the end of the book, allowing quick reference
to theorems and counterexamples. There are also 1500 problems which are
arranged in four sequences at the end of each section; the few problems whose
numbers are below 100 are considered part of the text. (See Section 1-1.)

REMARKS TO THE EXPERIENCED READER

A possibly unfamiliar concept is that of property of a dual pair. A dual pair
(X, Y) is said to have a property P if X has a compatible topology with
property P.(See Remark 8-6-8.) Thus (co, l) is a complete dual pair while (¢, ) is
not.

. The open mapping and closed graph theorems (in the primitive case) are
proved without use of quotients ; completeness of the dual of a bornological space
is given a simple direct proof (Corollary 8-6-6); and the more sophisticated
deduction from Grothendieck’s theorem is given later (Example 12-2-20.) Five
unique features of the book are:

1. Boundedness is proved to be a duality invariant in an easy way (Theorem
8-4-1), long before the appearance of the Banach-Mackey theorem (10-4-8).
This method is due to H. Nakano. .

2. Relatively strong topologies and an easy version of the Mackey—Arens theorem
(8-2-14) are given before the standard identification of the Mackey topology
(Theorem 9-2-3). '

3. The convex compactness property and sequential completeness are emphasized
and shown to have the same consequences in many cases (e.g, Theorems
10-4-8 and 10-4-11). Since bounded completeness implies both of these
properties, this represents an improvement of the usual treatmeat.

4. F linked topologies (Definition 6-1-9) are featured, with the consequent upper
heredity of all forms of completeness. This ties in with the aforementioned
properties of dual pairs, e.g., Mazur (Definition 8-6-3) is downward hereditary
so a dual pair (X, Y) is Mazur if and only if o(X, Y) is (Problem 8-6-101).

5. Empbhasis is placed on converse theorems (Section 12-6). This is the “Bourbaki
program” of finding the natural setting for classical Banach space theorems.
This includes the first textbook appearance of a recently discovered simple
proof of Mahowald’s characterization of barrelled spaces (Theorem 12-6-3).
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A special word of thanks goes to J. Diestel for many fruitful conversations
in bars and cocktail lounges throughout the United States. I had many occasions
to consult A. K. Snyder and also received much help from E. G. Ostling, D. B.
Anderson, W. G. Powell, C. L. Madden, and W. H. Ruckle.

The excellent Mathematics Department of Lehigh University provides an
ambience in which scholarship and mutual assistance prevails.

My daughter Carole Wilansky helped with many organizational chores. Judy
Arroyo typed the whole book with unbelievable speed and accuracy—I greatly
appreciate her dedication to the project. My thanks also to the staff of McGraw-
Hill for their helpfulness at every step.

Albert Wilansky,
January 1978



Preface

1 Introduction

1-1

Explanatory

Table of spaces
Some computations
Nets

Vector space
Topology

2  Metric Ideas

2-1
22

2-3

Paranorms
Seminorms
Seminormed space

3 Banach Space

3-1
3-2

4

3-3

4 Topological Vector Spaces
Definitions and examples

4-1
4-2

Banach space
The second dual

Uniform boundedness

Properties

CONTENTS



vitl- CONTENTS

10

4-3 Construction -
4-4 Bounded sets
4-5 Metrization

Open Mapping and Closed Graph Theorems
5-1 Frechet space '

5-2 Open maps

5-3 Closed graph

5-4 The basis

5-5 FH spaces .~

Five Topics

6-1 Completeness.

6-2 Quotients -

6-3 Finite-dimensional space
6-4 " Totally bounded sets

6-5 Compact sets

Local Convexity

7-1 Locally convex space
7-2  Seminorms

7-3  Separation and support

Duality

8-1 Compatible topologies
8-2 Dualtpairs

8-3 Polars

8-4 Boundedness

8-5 Polar topologies

8-6 Some complete spaces

Equicontinuity )

9-1 Equicontinuous sets

9-2 The Mackey—Arens theorem
9-3 Barrelled spaces

9-4 The equivalence program
9-5 Separable spaces

9-6 Applications

The Strong Topology

10-1 The natural embedding
10-2 Semireflexivity

10-3 Reflexivity

10-4 Boundedness

10-5 Metric space

47

56
56
57

67

72
72
77
81
83
87

91
91
94
98

103
103
107
110
114

- 118

123

128
128
132
136

141

143
145

149
149
153
156
157

162



11

12

13

14

15

Operators

11-1 Dual operators

11-2 The Hellinger-Toeplitz theorem

11-3 Banach space '

11-4 Weakly compact operators on Banach spaces

Completeness

12-1 Precompact convergence
12-2 aw*

12-3 Strict hypercompleteness
12-4 Full completeness

12-5 Closed graph theorems
12-6 Converse theorems

Inductive Limits

13-1 Inductive limits

13-2 Direct sums

13-3 Strict inductive limits

13-4 Finite collections of metric spaces

Compactness

14-1 Weak compactness
14-2 Convex compactness
14-3 Extreme points

14-4 Phillips’ lemma

14-5 The space L

14-6 The space M(H)
14-7 GB and G spaces

Barrelled Spaces

15-1 Barrelled subspaces

15-2 Inclusion theorems’

15-3 The separable quotient problem
15-4 The strong topology

15-5 Miscellaneous

Tables

Bibliography

Subject index

CONTENTS iX

164
164
167
169
174

178
178
184
189
193
200
204

209
209
213
218
224

227
227
231
233
235
239
240
244

248
248
252
254
258
264



CHAPTER

- ONE
INTRODUCTION

1-1 EXPLANATORY

We use the notations of elementary set theory such as 4 & B (A is a subset of B).
The only possibly unfamiliar one is the useful symbol #; 44 B (4 does not
meet B) means that A, B are disjoint. When 4 < X, X\A4 or (when X is under- -
stood) A is the complement of 4 (in X). = _ :

We use R", %" for the spaces of n-tuples of real, respectively complex,
numbers; R = R?, ¢ = 4. Every vector space X has for its space of scalars the
space " and, in this book, ¢ is always R or &; all statements made will be
correct for either interpretation except when we specifically mention real vector
space or complex vector space. (To avoid duplication, proofs are written using
complex scalars.)

Problems

Those numbered from 1 to 99 are basic for further developments and form part
-of the text. Problems numbered > 200 are more difficult, and those numbered
> 300 are really notes with references to the literature.

Proof Brackets

When part of a discussion is enclosed thus [...] it means that the immediately
preceding statement is being proved. For example, suppose that the text reads:
“Since x # 0 [if x = 0, cos x = 1, contradicting the hypotheses] we may cancel x.”
The reader should first absorb “Since x # 0, we may cancel x.” He may then,
if required, consult the proof in brackets.

6506137 :



" 2 TABLE OF SPACES 1-2

Notation

&* is the sequence x where x; = 1, x, = 0 for n # k; that is, & is the Kronecker
delta. For xe X', sgn x is defined to be | x|/x if x # 0; and sgn 0 = 1.

1-2 TABLE OF SPACES

Several spaces will be used to illustrate the developments of the text. They are
all vector spaces (Sec. 1-5) and each, with a few exceptions, has a distinguished
real function defined on it, called paranorm (Sec. 2-1) or norm (Sec. 2-2), and is
denoted by || x ||, its value at x. Whenever such a sentence occurs as “show that
¢ has a certain property,” the reader may consult this table. Unless otherwise
stated, the space is supposed to be endowed with its paranorm or norm.

1. Definition If [, is a scalar-valued function on a set X, || f]»o=
sup {| f(x)]: xe X }! This is called the sup norm. :

A=sup{|x,,|:n= 1,2,...}.

In particul

2. Definition If f is a scalar-valued function on [0, 1], || f ||, = (§5 ] f(e)|? dt)'”?
if p>1, | f],=1J5]f@]"de if 0<p<1. For a sequence x, [x|,=
QP ifp= 1, | x|, =Y |xPif0<p<1

’[able 1-2-1 Table of spaces, where all functions and sequences are scalar valued

bfa (N) See Example 2-3-14.
bfa (H, A) See Sec. 14-4.
B(X,Y) See Definition 2-3-2.
c Convergent sequences, with [ x ||«.
co . Null sequences (i.e., converging to 0), with || x ||,,,
% The complex numbers.
C(H) Continuous functions on H, with || f ||, if H is a compact Hausdorfl space. For a
general Hausdorff space, see Prob. 4-1-105.
C*H) Bounded continuous functions on H, with || f || .
Co(H) Continuous functions vanishing at infinity (that is, {x€ H:| f(x)| = ¢} is compact
: for each & > 0), with || /|| ‘
cs Convergent series, with || x|| = || s [l where s, = Y, _, X
Disc algebra Members of C(D) which are analytic in U, with ¥ ||(,0 where U={ze%:|z| <1},
. D=0
X The scalar field ; either % or R.
”r The set of sequences x, with { x ||, < co (Definition 1-2-2).
= The bounded sequences, with || x || .
r (Equivalence classes of) measurable functions on [0, 1], with || /||, < oo (Definition
1-2-2).
M (Equivalence classes of) all measurable functions on [0, 1], with

1l = [ LA + | FO 1 dr

M(H) See Sec. 14-6.
ny See Example 2-3-15.



1-3 SOME COMPUTATIONS 3

Table 1-2-1 Continued

N The positive integers.

All sequences, with || x || = Y (1/2") x, [A1 + | x. ).

All finite sequences, that is, x, such that x, = 0 eventually.
The real numbers.

xS g

1-3 SOME COMPUTATIONS

A few useful results from classical analysis are presented in this section.
Suppose that f"(x) > 0 for x > 0. Then,for0 < a< x < b,

f-fla_ U (., _ L[, f)-fx
x—a -x_aLf Sf""sb‘:;f,f"—”—b-x
Hence
- x X—a
f0 < 5= f(@) + T f)
Apply this to the function f = —log. With 8 = (b — x)/(b — a) we have
a®h!' < fa+(1 - O)b (1-3-1)

By symmetry, (1-3-1) holds for all positive a, band 0 <6 < 1.
Now with {a,}, {b,} nonnegative real sequences, 4 = z G, B=) b,, we have
Y (a./ 4)°(ba/B)! < (0/4)) a. + [(1 - 6)/B]Y. b, =1, and so

Y ab < (Y a) (X b)'° (1-3-2)

Let u,, v, be‘complexvsequences, p>1,1/p+ /g =1, and, in (1-3-2), set 0=1/p,
an = |U,|7, b, = | v, |% We obtain Holder's inequality:

Z’unvn| S(z:lun |p)l/p(2|vn 'q)l/q (1'3'3)

thatis, fuv ||, < |lu|?|v]% 1/p+ l/g=1

Applying (1-3-3) to partial sums we see that convergence of the series on the
right implies convergence of the left-hand series. The same remark applies to the
following arguments.

For p> 1, 1/p + 1/q = 1, applying (1-3-3) gives (a, > 0, b, = 0)

S(an + b = Y. au(a, + b)? 7'+ 3 balan + b))
< (X a®)"P[Y (an + ba)P~ V7V + (3 b2 /P[Y (an + b,)P~ VO]

Dividing the first and last terms by [ (a, + b,)¥]*/4 and using (p — 1)q = p, we
obtain .

TSan + b1 < (X a)VP + (3 b2
and so » .
S tn + 02|17 < (T a2 + (T 0P p 21 (1-3-4)



4. SOME COMPUTATIONS 1-3

Now let a, b be complex numbers, set u, = |a|'/?, v, = Ib'”" all other y; and
vj=0. Then (la|+|b)"” <|a|"? +|b|V2. Thus, for O0<p<1, |a% bjP<
]al"+lb|"andso

Z|u,.+v,.|’<2|u|’+2|v,.|" O<p<1 - (1-3-5)

We 9hall refer to both (1-3-4) and (1-3-5) as Mmkowskz s inequality. Each shows
that | u + v”p Tulp+lol,
-Next-is given an important theorem proved byI Schur in-1920. Let 4 = (@)
be a matrix of complex numbers. For x € w, let (4x), = X,( Ay Xy AX = {(AX)n},
if these series converge.

1. Definition For a matrix A, | A || = sup, Y x | am /.

Thns is called norm A (it may be oc) and the reason for the notatién is
explained in Prob. 3-3-103. It will be seen in Remark 15-2-3 that the assuaﬁptnon
| A|| < o is redundant in Theorem 1-3-2.
2. Theorem Suppose that || A] < o0 and Axeco for every sequence x of
zeros and ones. Then Y | du | — 0 as n— co.

PrOOF If the result is false we may assume that ¥, by | — 1. [Choose a
sequence {i(n)} of integers such that Y, | aimu| - t > 0f Let b = ayap/t. Then
| B| < o0, Bx € co for each sequence x of zeros and ones and Y |bu|— 1. It
is sufficient to prove that B cannot exist.] It follows that

‘Iim a,, =0 for each k

and | (1-3-6)

lim ¥ |au|=1 foreachm
Lt =]

The second part follows from the first, which is proved by setting x = &
in the hypothesis. Now choose r(1) so that )| i 1k | > %, then m(1) so that
Y laqaw| >4, and then Y2 i)+ s |a,u,k| < 4. [Choose separate m’s to
satisfy each inequality and let m(1) be the larger.] Now by (1-3-6) we may
choose r(2) > r(1) so that "'“f |a x| < % and E‘_,,,“,H | Grzm | > - Next
choose m(2) > m(1) so that Y 7))+, [a,(z,kl >4 and Y mz) i1 | Gran] < &
Continuing, we obtain Y7V au| <4 Yiemi-n+1|aaw|>1%; and

i+t |G| > 1 ZE‘;,,.(M RS ﬁ. Now define x; = sgn a,yy for
k=1,2,...,m(l), Xx = sgna,ou for k=m(1) + 1, m(1) + 2,...,m(2), and so
on. Then xi = +1 for each k and so Axe co. [Let y =(x + 1)/2 Then yis
a sequence of zeros and ones and x = 2y — 1.] But

m(i— 1) m{i)

k; G Xk + ),

k=m(i-1)+1

o
+ Z ARk Xk
k=m(i)+1

| (AX)iy | = Ok

.




1-4 NETS §

Thus Ax ¢ co.

PROBLEMS

1 Ifxel, ye B 1/p+ 1/q = 1, show that {x,y,} €l

101 Show that equality holds in (1-3-3) if and only if there exist constants A, B such that
Alu, [P = B|v,|°.

102 Show that equality holds in (1-3-4) if and only if there exist constants A, B such! that
Au, = Bv,. ' ’ . )

103 Show that (1-34)isfalse for O <p < 1.

104 State and prove Holder’s and Minkowski’s inequalities for integrals.

201 Show that, for p > 0, t(p) = (3. |u,|?)''? is a decreasing function of p. [See [153], p. 7.]
202 Show that (Prob. 1-3-201) lim {¢(p): p — + o0} = inf {t(p): p > O} = max }u,|. [See [153),p. 7.]

1-4 NETS

We begin with the concept of a partially ordered set, abbreviated poset. This is
a set X together with a relation >, with x > y true or false for each x, ye X. We
assume that the relation is reflexive, that is, x > x for all x, and transitive, that
is, x >y > z imply x >-z. Some authors also require that it be antisymmetric,-
that is, x> y > x imply y = x, but this rules out certain posets which rise
naturally in convergence discussions (Prob. 1-4-1). Introducing such a relation
into a set is called ordering the set. _

Extremely important examples are the set P of all subsets of a set X with !

(a) order by inclusion: A > Bmeans 4 < B;
(b) order by containment: A > B means A D B.

A directed set is a podet with the additional property that for each x,y
there exists z with z > x, z > y. For example, R with its usual order is a directed
set.

A chain is a poset which is antisymmetric and satisfies x >y or y > x for
each pair of members x,y; that is, any two members are comparable. For
example, R is a chain. - ' :

Any subset of a poset is a poset with the same ordering and might possibly
be a chain. For example, give R? the order (a b) > (x, y) means a > x and b=y
in the ordinary sense. Then the X axis is a chain. Indeed, it is a maximal chain
in that it is properly contained in no other chain, although there are other chains
such as {(x, x):x€ R}.
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. We shall now state an axiom of set theory. This axiom will be an unstated
hypothesis in all theorems where the phrase “let C be a maximal chain” occurs
in the proof. The first such is Theorem 1-5-5.

1. Axiom: Maximal axiom Every nonempty poset includes a maximal chain.

Some references for a discussion of the place of this axiom in mathematics,
and alternate forms of the axiom, may be found in [156], Sec. 7-3. '

A net is a function defined on some directed set, For example, a sequence is
a net defined on the positive integers. Just as there are sequences of points,
numbers, functions, so there are nets of points, numbers, functions. For example,
a net of real numbers is a function x: D — R where D is some directed set. Such
a net is written (x;: D), and in this case x; is a real number for each d e D.

Now suppose that (x;: D) is a net in some set X, that is, x: D — X is a map.
Let S « X. We say that xe€ S eventually if there exists do € D such that x;€ S for
all 5 > 50 >

2. Example Let D = {§€%:|6| < 1}. Order D by 6 > &' if |4| <{5'| Let
u = (us: D) be the net of complex numbers given by u;=e’ Let S=
{ze%:|z— 1| < 107%}. Then ue S eventually. Thls is just a special case of
the familiar fact that ¢° — 1 as § - 0.

We also say that a net has certain properties eventually; for example,
“| x5 — 2| < 1 eventually” means “x;€ {x:|x — 2| < 1} eventually.” ’

PROBLEMS

1 Although any two members of D, Example 1-4-2, are comparable, D is not a chain. {It is not
antisymmetric.]

2 Show that the set of all subsets of a set X ordered by inclusion is a dxrected set. Show the same
for containment. (For this reason we use the phrase “directed by inclusion™ to mean ~ordered by
inclusion.”)

3 Show that the directed set in Prob. 1-4-2 is not a chain if X has more than one point.

4 Let D be a directed set and S a nonempty finite subset. Show that there exists x with x > s for
all seS.

5 Let X be a directed set and U,, U,, ..., U, subsets of X. Suppose that x is a net with, for each
i, xe U, eventually. Show that xe n U, eventually [Prob. 1-4-4].

101 Give an example of a poset which is not a directed set.
102 The discrete order on a set X is defined by x > y if and only if x = y. The indiscrete order has
x > y for all x, y. Which of these is directed? antisymmetric?

103 The set of discs in the plane, ordered by containment,-is a directed set but no a lattice. (A
lattice is an antisymmetric poset such that each pair has a least upper bound and a greatest lower
bound.)

104 Show that Prob. 1-4-4 becomes false if S is allowed to be infinite.
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105 Describe the ordering of names in a telephone book. This is called the lexicographic order.
Show how to order R" lexicographically.

106 Let D = (0, 1) with the usual order. Let fy(t) = (cos )" ~¢for 8D, tel where I is some closed
interval in R. Show that || f5 |, < 1072 eventually if J = [4, 1], but not if F = [0, 11.

201 The maximal axiom for countable posets is equivalent to induction.

1-5 VECTOR SPACE

As mentioned in Sec. 1-1, our vector spaces have the scalar field 2, which is R
or . Throughout this section, X denotes a fixed vector space. For A < X, the:
span of A is the set of all (finite) linear combinations of A4; it is a vector subspage
of X. For a vector subspace S and point x, S + [x] denotes the span of S U {x}.
If the span of A is equal to X we say that A spans X.

A subset A < X is called convex if sA+tAc Afor 0<t<1, s+t=1;
balanced if tA < A for |t| < 1; and absorbing if for every xe X there exists ¢ > 0
such that tx e A for |t| < e. A vector subspace S of X is called maximal if S # X
and X = S + [x] for some x.

A function f: X — & is called a functional and X * denotes the vector space
of all linear functionals on X, that is, those satisfying f{sx + ty) = sf(x) + tf(y)
fors,te f, x,ye X. ) :

There is a natural correspondence between linear functionals and maximal
subspaces as follows. For each nonzero fe X *, f* = {x: f(x)= 0} is a maximal
subspace. For each maximal subspace S there exist many f€ X * such that f* =S
but only one whose value at any specified a¢ S is a specified nonzero scalar u. [Fix
a¢ f* Then x — [f(x)/f(a)]ae f*. Conversely, fix a¢S. Every x iss+ta se8s,
and we may set f(x) = .

1. Theorem Let f, fi, fa,.... fre X * and f* > n{fi:i=1,2,...,n}. Then"
f=Ztif.-. .

ProOF For n = 1, write f; = g. We may assume g # 0. Say g(a) = 1. Then
for each x, x — g(x)aeg* = f* so 0= f(x) — g(x)f(a). Thus f = [f(@]g.
Proceeding by induction, let f* > n{f{:i=1,2,...,n+ 1}. Let g = 1 fas
(the restriction of f to the smaller subspace), g; = fi4| fivifori=1,2,...,n
Then g' > n{gi:i=1,2,...,n}. By the induction hypothesis g = Y tig; and
so f(x)= Y4y tif{x) for x€f;51 By the case n=1, this implies that

/- Z'i'=1 tifi = tha+ 1

Now let X be a complex vector space and X i the same space but using only
real scalars; thus X g is a real vector space. Let Rz denote the real part of the
complex number z.

_2. Theorem Let X be a complex vector space, f€ X *. Then Rfe(Xg) *
. Moreover, for each g € (X ) * there exists unique f€ X * such that g = Rf.
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ProOF The first part is trivial. Next, to prove uniqueness, let ge(Xz) ",

feX* with g=Rf. Write f=g+ih he(Xg)* Then g(ix)+ ih(ix)=
f(ix) = if(x) = ig(x) — h(x). Equating real parts yields h(x) = —g(ix) and so
h, hence f, is uniquely determined if it exists. Finally, given g, define
he(Xg)* by h(x) = —g(ix) (the only formula that could work!). Let /=
g + ih, and we shall prove that f'is linear. It is clear that f(x + y) = f(x) + f(y)
and f(tx) = tf(x) for real ¢; but also f(ix) = g(ix) + ih(ix) = g(ix) — ig(iix) =
glix) + ig(x) = ifa(x) — ig(ix)] = if (x). '

3. Definition A Hamel basis for X is a linearly independent set which spans
X.

An n-dimensional space (n < o0) is one which has a Hamel basis with n
members.

4. Theorem Let X be an n-dimensional vector space, n < co. Then X * is
also n-dimensional. Further, for each Fe X ** there exists xe X such that
F(u) = u(xy for all ue X *. :

Proor Since X is isomorphic with #™ we may as well take X = ™. Let
P.e X * be defined by Pi(x) = x; for i = 1,2,...,n. For each fe X*, xe X, we
have f(x)=f(} %) =) f(#)Pu(x). Thus f= Y f(6YP, and so P=
(P,,Ps,...,P,) spans X * It is also linearly independent since if ) t.P, =0,
for any i,0= Z [kPk(éi) = ;. ' )

Next, given Fe X **, let x = [F(P,), F(P,),..., F(P,)]€ X. Then for each
ueX*tu= ZtkPk and so F{u) = zth(Pk) = Zthk = gtkpk(X) = u(x).

5. Theorem Every vector space X has a Hamel basis.

PrROOF Let P be the family of linearly independent subsets of X ; order P by
containment and let C be a maximal chain in P. (See Remark 1-5-6.) Let H
be the union of the sets in C. This is the required basis. First, H is linearly
independent. [This is the same as saying that every finite subset is linearly
independent. But such a subset is contained in some S€C since C is a chain;-
hence it is linearly independent.] Also, H spans X. [H is maximal among
linearly independent sets since, if not, a larger one could be adjoined to C
contradicting its maximality. So for any x ¢ H, H U {x} is linearly dependent,
that is, tx + ¥ tyhe = 0 for some ¢, t1,t2, .. 1, not-all 0, h;e H. Since H is

linearly independent, t # 0 and so we can solve for x.] v '

6. Remark If X = {0}, the set P in Theorem 1-5-5 is empty (voiding use of
the maximal axiom) unless we make some special convention. The one usually
chosen is to say that ¢, the empty set, is linearly independent, and span
¢ = {0}. Thus X has a Hamel basis with no members, and is 0-dimensional.
Hopefully, all the results given in this book are true in such special cases,
but we shall not take the space to spell them out. ‘



