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PREFACE

Linear systems have been under study for a long time, and from several dif-
ferent points of view, in physics, mathematics, engineering, and many other
fields. But the subject is such a fundamental and deep one that there is no
doubt that linear systems will continue to be an ot:cct of study for as long as
one can foresee. However, a particular feature of recent engineering studies,
and the main focus of this book, is the emphasis on the structure of finite-
dimensional linear systems. While such systems have been extensively studied,
especially since the early 193Qs, the frequency-domain techniques that were
commonly used often did not specifically exploit the underlying finite dimen-
sionality of the systems involved. Moreover, almost all this work was for
single-input, single-output (or scalar) systems and did not seem to extend
satisfactorily to the multi-input, multi-output (or multivariable) systems that
became increasingly important in aerospacé, process control, and econo-
metric applications in the late 1950s. This fact, plus the importance of time-
variant systems and time-domain characteristics in aerospace problems, led
to a resurgence of interest, sparked by the work of Bellmah and Kalman, in
the state-space description of linear systems. This approach led naturally to
“more detailed examinations of the structure of finite-dimensional linear sys-
“tems, or linear dynamical systems as they are often called, ‘and to questions of
redundancy, minimality, controllability, observability, etc. The papers [1]
and [2] give a good perspective of the situation around 1960. The state-space

1Sce the references following the Preface.
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xiv Preface

formulation led to some new proposals for system design and feedback com-
pensation—pole-shifting controllers,” quadratic regulator synthesis, state
observers and estimators, noninteracting control, etc. But just as the state-
space techniques were being codified into textbooks (References (3] and [4]
nicely bracket the books of that period), Popov [5] and Rosenbrock [6] were
showing how many of the scalar rational transfer function concepts could be
naturally extended to matrix transfer functions and multivariable systems and
how several questions could be more readily posed and solved in these terms.
Since then these concepts have been effectively pursued by several researchers.
By now, it seems to us, the main insight from this work is that transfer func-
tion (or high-order differential equation) descriptions and state-space (or
first-order differential equation) descriptions are only two extremes of a whole
spectrum of possible descriptions of finite-dimensional systems. We can work
exclusively with one description or the other, but we can also casily translate
results from one framework to the other, and, as expected, there are situa-
tions where a hybrid of the two extremes (using the so-called partial-siaie
descriptions) is the most natural.

Our aim in this textbook is to take a beginning student, with some prior
exposure to linear system analysis (elementary transform and matrix theory),
through a motivated and integrated development of these new and fuller
perspectives on linear system theory.

The detailed table of contents will provide a general idea of the
scope of the book. Briefly, we start with scalar (single-input, single-output)
systems and introduce the notions of state-space realizations, internal and
external descriptions, controllability, observability, and their applications to
minimal realizations, state-feedback controllers, and observers. While doing
this, we also compare and contrast these state-space results with more clas-
sical transfer function ideas and gradually build up the awareness that equiva-
lent results could have been obtained by working (carefully) with transfer
function descriptions without reference to state variables or controllability
or observability. The restriction to constant scalar systems in Chapters 1 to
5 allows one to gain this perspective at a fairly concrete and explicit level,
so that the extension to multivariable systems can proceed more rapidly in
the rest of the book (Chapters 6 to 9). Particular care was devoted to the
selection and arrangement of topics in the scalar case, so that the paralle!
multivariable development is not only well motivated but, in the author's
opinion, also .quite insightful and powerful. Thus at many points the devel-
opment reaches the frontiers of research (see also Chapter 10), equipping the
reader for new studies and applications in the many fields where linear system
theory can be important—e.g., in signal detection and estimation, system
identification, process control, digital filtering, communication systems, and,
generally speaking, the broad and exciting field of signal processing.

At Stanford, the material in the first five chapters and in Secs. 6.1, 6.2,
and in Chapter 9 is covered in a 40 to 45-hour senior/first-year graduate
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course, with some of the sections indicated by asterisks being left for extra
reading. Chapters 6 to 8 provide enough material for another 30-hour
course for graduate students, with opportunitics for further reading and
development as term-paper projects. However, the material can be arranged
in various ways, and I have tried to write in a way that will encourage brows--
ing and self-study by students of various ages and backgrounds.

At this point, some explanation of the origins of this book may be helpful
For a variety of reasons, the state-space approach has been largely developed
in control theory, and not in communication theory, where most of my own
interests lie. In the mid-1960s, Schweppe [7] in the United States and
Stratonovich and Sosulin [8] in the USSR began to show the usefulness of
state-space methods in signal detection problems. Then Omura showed how
the quadratic regulator control algorithm could be applied to certain feed-
back communication schemes [9]. These papers, and also the patient instruc-
tion of some of my early Ph.D. students, especially Jim Omura, Paul Frost,
Roger Geesey, Ty Duncan, and B. Gopinath, gave me a greater appreciation
of state-space theory and led me to introduce more of it into the Stanford
linear systems course. However, it soon became clear that a deeper knowledge
was necessary to really exploit the power of state-space methods. Also, the
existing fashion in textbooks was largely oriented toward the background
mathematics in differential equations and linear algebra, with less attention
to the engineering significance and applications of the concepts peculiar to
system theory. For example, much attention was devoted to Jordan forms,
various ways of evaluating matrix exponentials, and numerous definitions
of controllability and observability: The mathematics of all this was clear,
but what the books did not really explain was why all this was useful to
anyone—engineers or mathematicians.

It was the role of controllability in the pole-shifting problem for time-
invariant systems (Chapter 3), and that of observability in the design-of
asymptotic observers (Chapter 4), that first gave me some meaningful indi-
cation of the value of these concepts. Then, as I examined the original research
literature, I learned of their role in providing stability results for quadratic
regulators [10] and optimum filters [11]. The significance of this stability is
that the effect of numerical -errors in computation, e.g., round-off errors,
does not build up and destroy the calculation—obviously a very important
practical consideration. It became clear that controllability and observability
first arose as certain technical conditions to resolve existence and uniqueness
conditiors in certain optimal control and estimation problems. It was only
somewhat later that Kalman isolated them and defined them via certain
idealized problems [12], which for various reasons came to be overly empha-
sized in many treatments.

Moreover, as I began to obtain a better apprecxatnon of the state-space
point of view by applying it to various detection, estimation, and control
problems, the pioneering and extensive studies of Rosenbrock [6] (and then
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Popov, Forney, Wolovich, and others) clarified the power of the transfer
function approach and the benefits to be gained by a better understanding of
the relationships between it and the state-space approach. This book attempts
a synthesis of the powerful new perspectives on linear system theory that are
now available. The advantages of such a development are already to be seen
in various areas, and I believe that a lot more will be done with it.

These background remarks also explain why the contents of this book do
not quite follow the “traditional” (since 19631} order of presentation found
in most existing textbocks. One favorite topic in many of them is the time-
domain solution of state-space equations. This is an interesting topic and can
build well upon earlier knowledge of linear differential equations. However,
T feel that the students’ sense of accomplishment in mastering this material
is somewhat illusory. First, if one really had to solve some equations, there
are several readily available computer routines developed just for this pur-
pose. But it is claimed that one should “understand” what one is computing.
True, but this understanding comes from numerical analysis and not really
from the pretty but particular mathematics learned in the linear systems
course (see [13]). In fact, what is lost in dallying with this mathematics is the
awareness that many of the things that can be done with state-space equa-
tions do net really need explicit time-domain solutions of the state equations.
Therefore the solution of state-space equations has been deemphasized in
this book. On the other hand, [ have tried to show that the notion of explicit
realizations of a given set of system equations (cr transfer functions) can be
a powerful aid in understanding and using linear systems. This theme first
appears in Chapter 2 and continues to be developed throughout the book,
e.g., in the exploration of multivariable systems (Secs. 6.4 and 6.5) halfway
through the book, in the study of general differential systems in Chapter 8,
and in the explanation of adjoints of time-variant systems in Chapter 9, and
to a certain extent in the brief final Chapter 10. It may take time, and several
readings, to adjust to the somewhat different perspectives of this book, and
1 can only offer my own experience as proof that it might be worthwhile.

While learning this subject and attempting to get some perspective on
what was vital and what transient, I have found great help in going back to
the original sources. For, as Robert Woodhouse {14} pointed out in 1810 (in
the first book in English on the calculus of variations), “the Authors who write
near the beginnings of science are, in general, the most instructive: they take
the reader more along with them, show him the real difficulties, and, which
is the main point, teach him the subject the way by which they themselves
learnt it.” Therefore, in these notes I have often made a special effort to
point out the earliest papers on the different concepts and would encourage
the active reader to pursue them independently. More generally, the refer-
ences have been carefully selected for their significance, readability, and
potential for further study and, in several cases, further independent investi-
gation. Similarly, the exercises in this book are of various levels of difficulty

-
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and in several instances serve to complement and extend the material in the
text. Therefore, all the exercises should at least be read along with each
section, even if only a few are actually attempted.

I have also attempted to make the book reasonably self-contained, and
every effort has been made to keep the proofs as simple and direct as pos-
sible. For example, things have been so arranged so that very little linear
algebra is required either as a pre- or corequisite. What is really needed is
some exposure to matrix manipulations and, more importantly, a recognition
and acceptance by the student that, at this level, no course or textbook on
linear algebra (or in fact any mathematical subject) can be a perfect or com-
plete prerequisite for the material in any engineering course—there is no sub-
stitute for just buckling down to figure out many things for oneself {with
liberal use of 1 x I or 2 X 2 matrices in the early stages). Of course some
guidance is necessary, and therefore, in the Appendix and in Sec. 6.3, I have
tried to collect the results from elementary algebra and polynomial matrix
theory that are used in this book. However, they are not meant to be mastered
before launching into the rest of the bock-—rather, the explicit references
made in later sections to special results, such as determinantal and block
matrix identities or the Cayley-Hamilton theorem or the Smith canonical
form, are to be used as occasions for a more motivated study of the relevant
special topics. Of course this may often be painful and slow, but my experi-
ence is that the student thereby achieves a better mastery of the material and,
more important, a foretaste of the ability to pick out and learn enough about
some special (mathematical) topic to try to resolve particular problems that
he may encounter in his later work. The range of mathematics used in present-
day engineering problems is so wide that one could spend all one’s time taking
“prerequisites”—especially since studying well-established material is so
much easier than venturing out, even just a little, into some less well-defined
territory.

Therefore in this book I have tried to subordinate the mathematical con-
cepts to the system concepts—it is only too easy, and unfortunately only too
common, for readers at this level to be led down very entertaining but ulti-
mately deeply frustrating mathematical garden paths. My goal is not the
presentation or development of “mathematical” system theory but an effort
to introduce and use just as little mathematics as possible to expiore some of
its basic concepts. I try to follow an admonition of Joshua Chover [15]: "It is
time to dispel a popular misconception. The goal of mathematics is discovery,
not ‘proof”.” Or to make the point another way, I belong to the school that
holds ideas and exposition to be more important than “mere” results [16, 4.B].

Finally, I should also caution that the unavoidable vagueness of real
problems, arising from constraints of imperfect knowledge, nonmathematical
performance specifications, economic constraints, flexible acceptability
criteria, etc., means that solutions of the necessarily clean and specific mathe-
matical problems of any theory can ultimately only serve as “guides” to the
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actual “resolution” of any engineering problem. Unfortunately this is a dis-
tinction that cannot réally be conveyed by a textbook and is the reason good
teachers (or engineers) can never be replaced by a book (or a computer
program).

In this connection I should mention that, especially in the early chapters,
the presentation is deliberately loosely organized, with emphasis on discussion
and motivation rather than formal development. Several major themes are
gradually developed in a spiral fashion, and readers should not expect to
find all their questions answered the first time a topic is introduced. Students
will also find it helpful to frequently make up for themselves tables and
charts of the major concepts, results and interrelations as they perceive them
at various points in the course. A continuous interplay between skills and
knowledge must take place in any successful learning effort. As succinctly put
by Edsger Dijkstra [17, p. 211], a scientific discipline is “not any odd collec-
tion of scraps of knowledge and an equally odd collection of skills” but “the
skills must be able to improve the knowledge and the knowledge must be able
to refine the skills.” Therefore, to really understand a subject one has ulti-
mately to make a personal selection and resynthesis, modulated by one’s own
background and other knowledge, of the material in any given book or
course. My.hope is that this bookK will provide enough material and oppor-
tunity for such an educational experience, via self-study and/or classroom
instruction.

All this—
was for you, [dear reader].
I wanted to write a [book]
that you would understand.
For what good is it to me
if you can’t understand it ?
But you got to try hard—

Adapted from “January Morning? by William Carlos Williamst
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