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INTER-UNIVERSITY ELECTRONICS SERIES

- Series Purpose

The explosive rate at which knowledge in electronics has expanded in recent
years has produced the need for unified state-of-the-art presentations that
give authoritative pictures of individual fields of electronics. ,

The Inter-University Electronics Series is designed to meet this need
by providing volumes that deal with particular areas of electronics where
up-to-date reference material is either inadequate or is not conveniently
organized. Each volume covers an individual area, or a series of related
areas. Emphasis is upon providing timely and comprehensive coverage that
stresses general principles, and integrates the newer developments into the
overall picture. Each volume is edited by an authority in the field and is
written by several coauthors, who are active participants in research or in
educational programs dealing with the subject matter involved.

The volumes are written with a viewpoint and at a level that makes them
suitable for reference use by research and development engineers and scien-
tists in industry and by workers in governmental and university laboratories.
They are also suitable for use as textbooks in specialized courses at graduate
levels. The complete series of volumes will provide a reference library that
should serve a wide spectrum of electronics engineers and scientists.

The organization and planning of the Series is being carried out with the
aid of a Steering Committee, which operates with the counsel of an Advisory
Committee. The Steering Committee concerns itself with the scope of the
individual volumes and aids in the selection of editors for the different
volumes. Each editor is in turn responsible for selecting his coauthors and
deciding upon the detailed scope and content of his particular volume. Over-
all management of the Series is in the hands of the Consulting Editor.

Frederick Emmons Terman
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Preface

Feedback theory has had a significant impact in the design of systems
for precision regulation, stabilization, and reduction of noise and distor-
tion. Recent results have revealed deeper insights into known uses of
feedback and also have led to new feedback system design concepts. The
introduction of feedback modifies system structural properties, and it is this
modification that is exploited in analysis and design. For example, feedback
offers the possibility of meeting parameter tolerance specifications, simplifying
design computation by parameter imbedding, maintaining optimality in
control systems, and adapting a system to changes in environmental con-
ditions. This book contains developments of many of the recent results in
feedback theory. It is suitable as a main or a supplementary textbook for
graduate courses and as a reference or self-study book for engineers in
industry.

Chapter 1, “Feedback in Systems,” by Jose B. Cruz, Jr., provides a per-
spective for feedback theory and for the contributions contained in the other
chapters. Although the other chapters are somewhat self-contained, it is

xi



xii Preface

suggested that Chapter 1 be read first for an overview of the field, and to see
the relationships among the contributions. Chapter 2, “Sensitivity Analysis,”
by William R. Perkins, provides a basis for the study of the dependence of
systems on parameters and on disturbance inputs. Chapter 3, “Effects of
Feedback on Signal Distortion in Nonlinear Systems,” by Jose B. Cruz, Jr.,
applies the method of sensitivity analysis to the study of nonlinear distortion
in feedback systems. Chapter 4, “Feedback Design of Large Linear Systems,”
by Petar V. Kokotovi¢, describes two methods for reducing computations in
the design of large-scale linear feedback systeins with a quadratic performance
index. Chapter 5, “Comparative Sensitivity of Optimal Control Systems,”” by
Eliezer Kreindler, examines the effects of plant parameter variations on the
performance of optimal feedback systems. Chapter 6, “Near-Optimal Feed-
back Control,” by Jose B. Cruz, Jr., discusses the use of expansions to obtain
feedback control which maintains near-optimal performance in spite of para-
meter variations. Chapter 7, “On the Theory of Linear Multiloop Feedback
Systems,”” by Irwin W. Sandberg, generalizes the theory of Black, Nyquist,
Blackman, and Bode to multiloop linear feedback systems. Chapter 8, “Ap-
plications of Functional Analysis to Nonlinear Control Systems with Un-
known Plants,” by Philip E. Sarachik, discusses the use of functional analysis
in the theory and computation of optimal control. Many of the results on
which the above chapters are based have appeared only recently in journal
articles.

John G. Truxal reviewed the entire volume, and his helpful suggestions
are acknowledged. The undersigned is indebted to Rose Lane for her excellent
typing of Chapters 1, 2, 3, 4, and 6.

Jose B. Cruz, Jr.
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1
Feedback in Systems

Jose B. Cruz, Jr.
University of lllinois, Urbana

The successful and widespread introduction of feedback in system design for
precision regulation, stabilization, and reduction of noise and distortion has
firmly established the importance of feedback. Recent research has revealed
not only broader insights in known uses of feedback but also new feedback
concepts in system design. In Sec. 1.1 major goals that might be attained
with feedback are discussed in order to provide perspective for the book.
Section 1.2 summarizes the nature of contributions described in the subse-
quent chapters.

11 WHY USE FEEDBACK?

A system to be controlled, called a plant, has a set of outputs represented by
the vector y and a set of inputs represented by the vector . An external
input vector r, which usually represents the desired output, may be available
also. If the plant input u is obtained as an operation on r, the operator is
known as an open-loop controller and the system is said to be an open-loop

1



2 1 FEEDOBAGK IN SYSTEMS

r Open-loop | u Plant Y
|

External controller Output
input

Fig. 1.1 Open-loop system.

system. Figure 1.1 shows the general structure of an open-loop system. If
the plant input u is an operation on r and y, the operator is called a feedback
controller and the system is defined as a feedback system. Figure 1.2 shows
the general structure of a feedback system. It is assumed that the output is
accessible for measurement. In Fig. 1.2, the transducer which senses the
output is considered as part of the controller.

The type of dynamic system discussed in this volume is modeled in
terms of ordinary differential equations. Such a system is called a lumped
time-continuous dynamic system. The basic concepts of feedback apply also
to discrete-time systems and distributed systems, but these latter systems are
not discussed in the book, for simplicity of presentation of the main theme of
feedback.

The use of feedback in systems may not necessarily improve perform-
ance. In fact, if the goals age not clearly undérstood, it may create more
problems than it solves. To appreciate and evaluate the trade-offs involved,
it is helpful to know what the potential benefits are. Listed below are goals
that might be attained by employing feedback.

1.1.1 TO STABILIZE AN UNSTABLE SYSTEM

The stabilization of unstable systems has been one of the major aims of feed-
back. Without the addition of feedback in rocket booster systems, reference
platform systems for navigation and guidance, spacecraft attitude systems,
nuclear-reactor systems, electromechanical levitation systems, controlled
fusion, controlled growth processes in biological systems, and biasing of
certain solid-state electronic circuits, the unavoidable uncertainties in initial
conditions and the inaccuracies in the model that would be used for deter-
mining an open-loop control would render such systems useless.

r
External Feedback ad Plant o
input controiler Output
Feedback

Fig. 1.2 Feedback systern.
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NN

Fig. 1.3 Inverted pendulum, an u
inherently unstable system that can
be stabilized by feedback. ”

To illustrate the use of feedback to stabilize an inherently unstable
system, consider the inverted pendulum in Fig. 1.3, which is a stick of mass m
supported by a cart of mass M through a hinge, where the stick motion is
constrained to be on a plane, and cart motion is constrained to be along the
horizontal y direction only. This simple mechanical system has been exten-
sively studied as a simplified model for many important aerospace applications
[1-3]. Applying Newton’s laws,

%——- = VLsinp — HLoos ¢
dt2 (Lc03¢)-—mg+ 4
md?

T (y + Lsing) =

M d3%

3z —u-H

where I = Y4mlL? is the moment of inertia of the stick about its center of
gravity, L is one-half the length of the stick, V is the vertical force in the
upward direction exerted by the cart on the stick, and H is the horizontal force
to the right exerted by the cart on the stick. When the cart is at rest, the
stick is in vertical position, and the force u is zero, then the system is in
equilibrium.  This equilibrium position is unstable, in the sense that with any
initial perturbation from this posmon no matter how small, the stick will fall
down. D



4 1 FEEDBACK IN SYSTEMS

Let us now examine the motion for small values of ¢ if a control force u
can be applied. Using the approximation sin 9 X @ and cos ¢ % 1,

X; = X
X2 = azlxl + b2u
X3 = X3

.X‘f,i = Q41X + b.;u

or
0 100 0
P LR PO LC) WY (1.1
0 00 1 0
g, 0 0 0 b,

where x;, = @, Xo =@, Xz =y, X4 = P, G = 3g(m + M)/L(m + 4M),
ay, = —3mgl(m + 4M), b, = —3|L(m + 4M), b, = 4/(m + 4M), and x is
a four-dimensional vector whose components are x;, X5, X3, and x4. If there
is a small but unknown perturbation of the initial state and if » is an open-loop
control, the equilibrium point would be asymptotically stable if all the eigen-
values of 4 had negative real parts, and it would be unstable if at least one
eigenvalue of 4 had a positive real part. This stability criterion based on the
linearized system is Lyapunov’s first method. (For example, see Ref. 4 for a
treatment of this point.) The eigenvalues of A are the roots of

det (sI — A) = s%(s2 — ayy) =0 (1.2)

Since a,, is positive, there is a real and positive eigenvalue. Thus the equilib-
rium point of the open-loop system s unstable.

If the control input u can be formed as a linear combination of x;, x5,
X3, and x,,

u= k1x1 + k2X2 + k3X3 + k4X4 (1.3)

where k,, ko, k3, k4 are constants, u is called a linear state feedback control,
and (1.1) becomes

%= Ax + Blks ky ks kix = (4 + BK)x (1.4)

The linearized system with state feedback would be asymptotically stable if
all the cigenvalues of 4 + BK, that is, all the roots of

det (s — A — BK) = 5% — (boks + bska)s® — (baky + agg + baky)s®
— (baas ks — byasiky)s — (bzasks — bsasks)
0 (1.5)

i



1.1 WHY USE FEEDBACK? 5

had negative real parts. For any given set of values of a,;, a4, bz, and b,,
it is clear that the feedback coefficients kg, k4, k;, and k, could be chosen to
make the coefficients of the characteristic equation in (1.5) have any desired
values. Hence, not only could the eigenvalues be forced to have negative
real parts, but the eigenvalues could have any values whatsoever, provided
only that complex eigenvalues occur in conjugate pairs. Thus in this ex-
ample, linear state feedback could stabilize the system in the sense that for
any arbitrary but sufficiently small perturbation of the initial state from the
equilibrium position, the motion would tend to the equilibrium point as time
goes to infinity.

The above example illustrates the first method of Lyapunov for a non-
linear time-invariant system

% = f(x,u) (1.6)

where f(0,0) = 0, x is n-dimensional, u is m-dimensional, and f and &f/ox are
continuous in a neighborhood of the origin.: Denote of/ox evaluated at
x =0and u = 0by 4: '

1.7

0
0

of
A=z

nan

Note that A4 is a constant n x n matrix. If«isimplemented as an open-loop
control, the equilibrium point x = 0 is asymptotically stable if all the eigen-
values of A have negative real parts, and the equilibrium point is unstable if
A has at least one eigenvalue with a positive real part [4, 5]. Furthermore,
if u is implemented as a feedback control u = ¢(x), where ¢(0) = 0, 8f/ou, ¢,
and dg/dx are continuous in a neighborhood of the origin, then the equilibrium
point of the nonlinear system is asymptotically stable if all the eigenvalues of
A + BKhave negativereal parts [5S]. Band K are constant matrices defined by

of
= o (1.8)
u=0
o9
K= Fxl oo (1.9)

We shall say that the nonlinear system (1.6)-is stabilizable if there exists a
feedback control u = ¢(x) such that all the eigenvalues of 4 + BK have
negative real parts. For small motion around the equilibrium point, (1.6)
can be approximated by the linearized system

X = Ax + Bu (1.10)

If the linearized system in (1.10) is controllable [6], then the matrix K can
always be chosen to attain any desired set of eigenvalues of 4 + BK [6-8].
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Hence controllability of the linearized system guarantees that (1.6) is stabiliz-
able.

Not all the state variables of a linearized system may be accessible.
But if the linearized system is observable [6] as well as controllable, it can
be made stable by feedback through an observer [7] whose input consists
of the accessible state variables and the plant input.

Suppose that the p-dimensional output y is given by

y = g(x) 1.11)

where g and dg/ox are continuous in a neighborhood of x = 0 and g(0) = 0.
Then the linearized output is

y=Cx

where the constant matrix C is equal to 0g/ox evaluated at x = 0.
Construct a dynamic system called an observer
£ =A% + Bu— R(y — C%) 1.12)

whose inputs are » and y and whose output is £, where the matrix K is yet
to be determined. Subtracting (1.10) from (1.12),

£—x=(4+ RCY% — x) (1.13)
Now form ‘
u=K# (1.14)

where K is to be determined. In terms of the error e = % — x, the state
equations of the composite system can now be written as

% = (4 + BK)x + BKe (1.15)
é = (4 + RCe (1.16)

It can be verified that the eigenvalues of the composite system in (1.15) and
(1.16) are the eigenvalues of 4 + BK and the eigenvalues of 4 + KC [73. If
the system is completely controllable, K can be chosen to yield any set of
desired eigenvalues of 4 + BK: and if the system is completely observable, K
can be chosen to yield any desired set of eigenvalues for 4 + KC [7-11].
Hence K and K can be chosen to yvield any set of 2n eigenvalues, where n is
the order of the plant. In particular, the eigenvalues can be chosen to have
negative real parts resulting in a stable system. Figure 1.4 shows the block
diagram for the realization, when the plant is linear time-invariant.

For the nonlinear system (1.6) and (1.11), if the linearized model is
controllable and observable, a linear feedback control given by (1.14) and
(1.12) can always be found by suitable choice of K and K such that the
equilibrium point x = 0 is asymptotically stable for sufficiently small initial-
state perturbation. Figure 1.5 shows the structure for the feedback system.
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Plant
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Fig. 1.4 For a completely controllable aqd completely ob-
servable linear time-invariant plant, X and X can be chosen to
yield any set of 2x eigenvalues for the feedback system.

The stabilization of an equilibrium point of an autonomous nonlinear
systemr by stabilizing the associated linearized system is local in the sense that
the stabilization is guaranteed only for x, sufficiently close to the equilibrium
point. Global stability may be investigated by using Lyapunov’s second
methord, For a recent account of this theory, see Ref. 12.

1.1.°2 TO REDUCE SENSITIVITY TO PARAMETERS,
NUISE, AND NONLINEAR DISTORTION
" One of the well-known benefits of feedback is the possibility of achieving a
high degree of static accuracy in spite of variations in parameters of the plant
[13-16]. Reduction of noise transmitted to the output and reduction of non-
linear distortion are other classical motivations for the use of feedback [13-16].
For a single-input, single-output, single-loop linear time-invariant
system, a classic rule of thumb is to make the loop gain as high as possible
without incurring instability. This makes the sensitivity to plant parameters
and load disturbances low, and at the same time it reduces the effect of a
nonlinear perturbation of a nominally linear plant. If noise associated with
the feedback measurement is not negligible, a high loop gain tends to make
the noise transmitted to the output high. Thus feedback design for high
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Fjg. 1.5 If the linearized plant is controllable and observable, K and
K can be chosen to stabilize the equilibrium point x = 0.

static accuracy, low sensitivity to load disturbance, low nonlinear distortion,
low transmission of feedback measurement noise, and stability leads to a
compromise choice of gain and frequency characteristic of the loop trans-
mission [13, 14, 16].

For multivariable systems with multiple loops and multiple parameters,
it is easy to lose sight of the aim of feedback and end up with an unsatisfactory
feedback system. A suitable criterion is needed to assess the degree to which
the feedback is able to achieve the stated goal. Such a criterion is discussed -
in Chaps. 2 and 3, and a general theory for multiloop linear time-invariant
systems is described in Chap. 7.

1.1.3 TO MAINTAIN OPTIMALITY

In a system optimization problem, a functional called performance index or
cost functional is minimized with respect to a control-vector function or with
respect to control parameters. The performance index might be fuel con-
sumption, time to reach a target, integrated squared error between a desired
trajectory and actual trajectory, economic cost, energy expenditure, or a
weighted sum of several of these.



