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This textbook provides an introduction to the tools and mathematical techniques
necessary for understanding and analyzing both continuous-time and discrete-
time linear systems. We have attempted to give an insight into the application
of these tools and techniques for solving practical engineering problems. Our
philosophy has been to adopt a systems approach throughout the book for the
introduction of continuous-time signal and system analysis, rather than use the
framework of traditional circuit theory. We believe that the systems viewpoint
provides a more natural approach to introducing this material in addition to
broadening the horizons of the student. Furthermore, the. topics of discrete-time
signal and system analysis are most naturally introduced from a systems view-
point, which lends overall consistency to the development. We have, of course,
relied heavily on the students’ circuit theory background to provide illustrative
examples.

The organization of the book is straightforward. The first six chapters deal
with continuous-time linear systems in both the time domain and the frequency
domain. The principal tool developed for time-domain analysis is the convolu-
tion integral. Frequency-domain techniques include the Fourier and the Laplace
transforms. An introduction to state variable techniques is also included. The
remainder of the book deals with discrete-time systems including z-transform
analysis techniques, digital filter analysis and synthesis, and the discrete Fourier
transform and fast Fourier transform (FFT) algorithms.

This organization allows the book to be covered in two three-semester-hour



courses, with the first course being devoted to continuous-time signals and sys-
tems and the second course being devoted to discrete-time signals and systems.
Alternatively, the material can be used as a basis for three quarter-length courses.
With this format, the first course would cover time- and frequency-domain
analysis of continuous-time systems. The second course would cover state var-
iables, sampling, and an introduction to the z-transform and discrete-time sys-
tems. The third course would deal with the analysis and synthesis of digital
filters and provide an introduction to the discrete Fourier transform and its
applications.

The assumed background of the student is mathematics through differential
equations and the usual introductory circuit theory course or courses. Knowledge
of the basic concepts of matrix algebra would be helpful but is not essential.
Appendix A is included to bring together the pertinent matrix relations that are
used in Chapters 5 and 6. We feel that in most electrical engineering curricula
the material presented in this book is best taught at the junior level.

We begin the book by introducing the basic concepts of signal and system

- models and system classifications. The idea of spectral representations of peri-
odic signals is first introduced in Chapter 1 because we feel that it is important
for the student to think in terms of both the time and the frequency domains
from the outset.

The convolution integral and its use in fixed, linear system analysis by means
of the principle of superposition are treated in Chapter 2. The evaluation of the
convolution integral is treated in detailed examples to provide reinforcement of
the concepts. Calculation of the impulse response and its relation to the step
and ramp responses of a system are discussed. Chapter 2 also contains optional
sections* and examples regarding writing the governing equations for lumped,
fixed, linear systems and the solution of linear, constant coefficient differential
equations. These are intended as review and may be omitted without loss of
continuity. :

The Fourier series and Fourier transform are introduced in Chapter 3. We
have emphasized the elementary approach of approximating a periodic function
by means of a trigonometric series and obtaining the expansion coefficients by
using the orthogonality of sines and cosines. We do this because this is the first
time most of our students have been introduced to Fourier series. The alternative
generalized orthogonal function approach is included as a nonrequired reading
section at the end of this chapter for those who prefer it. The concept of the
transfer function in terms of sinusoidal steady-state response of a system is
discussed in relation to signal distortion. The Fourier transform is introduced
next, with its applications to spectral analysis and systems analysis in the fre-
quency domain. The concept of an ideal filter, as motivated by the idea of
distortionless transmission, is also introduced at this point. The Gibbs phenom-
enon, window functions, and convergence properties of the Founer coefficients
are treated in optional closing sections.

The Laplace transform and its properties are introduced in Chapter 4. Again,
we have tried to keep the treatment as simple as possible because this is assumed
to Pe a first exposure to the material for a majority of students, although a

*QOptional sections are denoted by an asterisk.
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summary of complex variable theory is provided in Appendix B so that addi-
tional rigor may be used at the instructor’s option. The derivation of Laplace
transforms from elementary pairs is illustrated by example, as is the technique
of inverse Laplace transformation using partial fraction expansion. Optional
sections on the evaluation of inverse Laplace transforms by means of the com-
“plex inversion integral and an introduction to the two-sided Laplace transform
are ‘also provided.

The application of the Laplace transform to network analysis is' treated in
detail in Chapter 5. The technique of writing Laplace transformed network
equations by inspection is covered and used to review the ideas of impedance
and admittance matrices, which the student will have learned in earlier circwits
courses for resistive networks. The transfer function is treated in detail, and the
Routh test for determining stability is presented. The chapter closes with a
treatment of Bode plots and block diagram algebra for fixed, linear systems.

In Chapter 6, the concepts of a state variable and the formulation of the state
variable approach to system analysis are developed. The state equations are
solved using both time-domain and Laplace transform techniques, and the im-
portant propertiés of the solution are examined. Finally, as an example, we
show how the state-variable method can be applied to the analysis of circuits.

The final three chapters provide coverage of the topics of discrete-time signal
and system analysis. Chapter 7 begins with a study of sampling and the repre-
sentation of discrete-time systems. The sampling operation is covered in con-
siderable detail. This is accomplished in the context of formulating a model for
an analog-to-digital (A/D) converter so that the operation of quantizing can be
given some physical basis. A brief analysis of the effect of quantizing sample
values in the A/D conversion process is included as an introduction to quantizing
errors. As a bonus, the student is given a basis upon which to select an appro-
priate wordlength of an A/D converter. The z-transform, difference equations,
and discrete-time transfer functions are developed with sufficient rigor to allow.
for competent problem solving but without the complications of contour inte-
gration.

Chapter 8 allows the student to use his knowledge of discrete-time .analysis
techniques to solve an important class of interesting problems. The idea of.
system synthesis, as opposed to system analysis, is introduced.. Discrete-time
integration is covered in considerable detail for several reasons. First, the idea
of integration will be a familiar one. Thus the student can appreciate the different
information gained by a frequency-domain analysis as opposed to a time-domain
analysis. In addition, the integrator is a basic building block for many analog
systems. Finally, the relationship between trapezoidal integration and the bi-
linear z-transform is of sufficient importance to warrant a discussion of trape-
zoidal integration. The synthesis techniques for digital filters covered in this
chapter are the standard ones. These are synthesis by time-domain invariance,
the bilinear z-transform synthesis, and synthesis through Fourier series expan-
sion. Through the application of these techniques, the student is able to gain
confidence in the previously developed theory. Since several synthesis tech-
niques depend on knowledge of analog filter prototypes, Appendix B, which
discusses several different prototypes, is included. ‘

The discrete Fourier transform (DFT) and its realization through the use of
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fast Fourier transform (FFT) algorithms .is the subject of Chapter 9. Both
decimation-in-time and decimation-in-frequency algorithms are discussed. Sev-
eral examples are provided to give the student practice in performing the FFT
operations. We believe that this appsoach best leads to a good understanding of
the FFT algorithms and their function. Basic properties of the DFT are sum-
marized and a comparison of the number of operations required for the FFT as
compared to the DFT is made. Several applications of the DFT are summarized
and the use of windows in suppressing leakage is discussed. This chapter closes
with a discussion and illustration of FFT algorithms with arbitrary radixes and
the chirp-z tiansform.

A complete solutions manual, which contains solutions to all problems, is
available from the publisher as an aid to the instructor. Answers to selected
problems are provided in Appendix E as an aid to the student.

The authors wish to express their thanks to the many people who have con-
tributed, both knowingly and unknowingly, to the development of this textbook.
First, thanks go to our long-suffering students, who have been forced to study
from our notes, often while they were still in various stages of development.
Their many comments and criticisms have been invaluable and are gratefully
appreciated. Many of our colleagues in the Electrical Engineering Department
at the University of Missouri—Rolla taught ‘¢ourses that used the book in note
form and provided many suggestions for improvement. In this regard, we thank
Professors Gordon E. Carlson, Kenneth H. Calpenier, Ralph S. Carson, David
R. Cunningham, Thomas J. Herrick, Frank J. Kern, Earl F. Richards, John A.
Stuller, and Thomas P. Van Doren. Professors Carlson, Carson, and Stuller
critically reviewed much of the manuscript and provided valuable suggestions
for improvement. Additionally, we would like to thank the reviewers at other
institutions who provided valuable criticism, especially K. Ross Johnson, Mich-
igan Technological University, Bruce Johansen, Ohio Northern University, Sa-
leem Kassan, University of Pennsylvania, and Neal Gallagher, Purdue University.
However, any shortcomings of the final result are solely the responsibility of
the authors. We also are indebted to John Liebetreu, Graduate Teaching Fellow
in the EE Department at UMR, who produced an extremely neat master for the
solutions manual. A most sincere thanks goes to our secretaries whose great
care and expert typing skills allowed us to generate the final manuscript with a
minimum of headaches. The National Engineering Consortium is also due thanks
since it was through their series of seminars that much of the material in Chapters
7 and 8 was originally taught.

Last, but not least, we thank our wives and families for putting up with a
project whose end at times seemed nonexistent.

R.E.Z.
W.H.T.
DR.F. .
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CHAPTER
Signal and System
Modelmg Concepts
f o R et Pov it gl g e PR S R
1-1
INTRODUCTION

This book deals with systems and the interaction of signals in such systems. A
system, in its most general form, is defined as a combination and interconnection
of several components to perform a desired task.T Such a task might be the
control of liquid level in a tank or the transmission of a message from New
York to Los Angeles. A liquid-level controller might make use of a human
operator who closes a valve once the liquid reaches the desired level. An equally
unsophisticated solution to the message delivery problem might make use of a
horse and rider. Obviously, more complex solutions are possible (and probably
better). Note, however, that our definition is sufficiently general to include them
all. .

We will be concerned primarily with linear systems. Such a restriction is
reasonable because many systems of engineering interest are closely approxi-
mated by linear systems and very powerful techniques exist for analyzing them.
We consider several methods for analyzing linear systems in this book. Although
each of the methods to be considered is general, not all of them are equally

tThe Institute of Electrical and Electronics Engineers Dictionary defines a system as ‘‘an inte-
grated whole even though composed of diverse, interacting structures or subjunctions.”



convenient for any particular case. Therefore, we will aitempt to point out the
usefulness of each.

A signal may be considered to be a function of time which represents a
physical variable of interest associated with a system. In electrical systems,
signals usually represent currents and voltages, whereas in mechanical systems,
they might represent forces and velocities.T In the liquid-level control problem
mentioned above, one of the signals of interest represents the level uffliquid in
the tank.

Just as there arc several methods of systems analysis, there are several dif-
ferent ways of representing and analyzing signals. They are not all equally
convenient in any particular situation. As we study methods of signal represen-
tation and analysis we will attempt to point out useful applications of the tech-
niques. ‘

So far, the discussion has been rather general. In order to be more specific -
and “» fix mor> clearly the ideas we have introduced, we will expand on the
liquid-level control and the message delivery problems already mentioned.

TWO EXAMPLES '
Liquid-Level Controller

Shown in Figure 1-1 is a simple electromechanical control system for controlling
the liquid level in a tank. Such a system is often used for sump pumps. Two
floats are suspended on a wire that is attached to a spring-loaded switch. The
weight of the floats is chosen such that the toggle action switch closes if the
liquid Ievel is above the highi:r tloat, and stays closed until the liquid level goes
below the lower float, whereupon the switch opens.

To analyze this system, the first thing an engineer wouRi do is to replace the
actual system with a model. Such a model is an attempt at representing only the
essential details of the actuyl system: mathematically, or pictorially, or both.
To illustrate the concept ofa*model, we assume that a model is desired which
describes the tank’s liquid level for all time.

For example, letting the liquid level in the tank be x centimeters from the
bottom float and the vofu%et(ic flow rate out of the tank be f liters per second

- when the pump is on, a set of equations that would be a possible model for the
system of Figure 1-1 when the pump is on is

(10 liters/s, 0=<x=50cm
fx) =
0, x=0

where the top float is assumed to be at x = 50 cm and the lower one is assumed
to be at x = 0 cm. Futhermore, if the tank is 100 cm in diameter, the volume

tMore generally, a signal can be a function of more than one independent variable, such as the
pressure on the surface of an airfoil, which is a function of three spatial variables and time.
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Motor

x =50 cm
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Jo ¢

FIGURE 1-1. Liquid-level controlier.

at height x cm is

<
It

w(50)%x
= 25007x cm’
= 2.57x liters
Thus the time required for the liquid level to decrease 1 cm is
I' = (2.5 liters/cm)/(10 liters/s)
0.257 s/cm

or the rate at which the tank will empty is

Lo
r
The total time required for the liquid to reach the bottom float if it began at the
top float is

T, = (0.25% s/cm) (50 cm)
= 12.5m s

Clearly, when the pump is on, the change in x with time must be linear, since
the volumetric flow rate f and the tank diameter are constants. A plot showing
liquid level versus time, assuming that the tank started to empty att = O, is
shown in Figure 1-2. ' ’

In order to proceed further with this problem, we might hypothesize a mech-
anism by which the tank fills so that we could mathematically describe the liquid

1-2 TWO EXAMPLES 3
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FIGURE 1-2. Ligquid level versus time.

level for all time. We could also include information about the pump motor
starting and stopping dynamics, or the dynamics of the opening and closing of
the switch. We will consider some of these refinements in this and later chapters.
All such refinements to the original model would be attempts at representing
more closely the real-world situation. Regardless of how refined the model
becomes, however, it is still an idealization of the actual set of circumstances.
Since it is the model that is analyzed, it therefore follows that the graph showing
liquid level versus time is also an idealization.

EXAMPLE 1-1

Suppose that water flows into the tank continuously at a constant rate of
fi, = 5 liters/s. Modify the analysis above to obtain expressions for x that are
valid for all time. '

Solution: 1Ifr = 0 is taken as an instant in time at which the tank is full,
then T' = (2.5m liters/cm)/{(10 — 5).liters/s)] = 0.5%w s/cm is the time
required for the tank to empty | cm. Thus 7, = (0.5 s/cm) (50 cm) =
257 s for the tank to empty. The tanks fills at the same rate, so that x is a
triangular function of time that repeats every 2(25mw) = 507 s. You should
sketch the waveform for x and dimension it fully as in Figure 1-2. |

To reemphasize, the starting point of any systems analysis problem is a model
which, no matter how refined, is always an idealization of a real-world (phys-
ical) system. Hence the result of any systems analysis is an idealization of the
true state of affairs. Nevertheless, if the model is sufficiently accurate, the results
obtained will portray the operation of the actual system sufficiently accurately
to be of use.

Communications Link

Figure 1-3 is a pictoral representation of a two-way communications link as
might exist, for example, between New York and Los Angeles. It might consist

SIGNAL AND SYSTEM MODELING CONCERTS 49
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