TWO-PHASE FLOW AND HEAT TRANSFER

Edited by

D. BUTTERWORTH and G. F. HEWITT

Harwell Series

TWO-PHASE FLOW AND HEAT TRANSFER

Edited by

D. BUTTERWORTH and G. F. HEWITT

Harwell Series

OXFORD UNIVERSITY PRESS

Oxford University Press, Walton Street, Oxford 0x2 6DP

Oxford London clasgow new york

Tokonto melbourne wellington cape town

IBADAN NAISORI DAR ES BALAAM

EUALA LUMPUR SINGAPORE JAKARTA HONG KONG TOKYO

DELHI BOMBAY CARGUTTA MADRAS KARACHI

© Oxford University Press 1977

ISBN 0 19 851715 7

First published 1977
Reprinted (with corrections) 1978

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press

Printed in Great Britain by Thomson Litho Ltd., East Kilbride

List of Symbols

	*
a , ,	Heat transfer area (m ²).
a _b	Area of surface occupied by bubbles (m^2) .
A	Channel flow area (m ²).
A	Parameter defined by eqn (9.48).
A _G	Mean flow area for gas or vapour flow (m^2) .
A _L	Mean flow area for liquid flow (m2).
Bi	Biot number, $hL_{\rm g}/k_{\rm g}$.
Во	Boiling number, $\phi/G\lambda$.
c	Constant in eqn (4.45).
c _c	Coefficient of contraction at an abrupt reduc-
•	tion in flow area.
c _d -	Concentration of droplets in the gas phase in
u .	annular flow (calculated on a homogeneous
	basis) (kg m ⁻³).
c _e	Concentration of droplets in gas core at
•	hydrodynamic equilibrium (kg m ⁻³).
C _p	Specific heat (J kg K 1).
C _{na}	Specific heat of component A (J kg 1).
C _{pA}	Specific heat at constant pressure for the
PG .	gas or vapour phase (J kg 1 K 1).
C _{pL}	Specific heat at constant pressure for the
, PB	liquid ($J kg^{-1} K^{-1}$).
C _{TT}	Total molar concentration (kmol m ⁻³).
Co.	Parameter defined by eqn (5.26).
Cı	Constant in Blasius equation.
C ₁	Constant in Rohsenow equation (eqn (7.1)) which
	is given for various fluid - surface combina-
	tions in Table 7.1.
D	Tube diameter (m).
2	

. ^D b	Bubble departure diameter in nucleate boiling
	(m).
$^{D}_{\mathbf{G}}$	Diameter of gas cylinder in separate cylinder
	model described in § 4.4.1 (m).
D _H	Channel hydraulic mean diameter (m).
^D H 2 I A B	Diffusion coefficient for binary mixture of
- -	A and B $(m^2 s^{-1})$.
f	Friction factor.
f	Bubble frequency (s ⁻¹).
f _H	Homogeneous flow friction factor.
f _L	Friction factor for the liquid flowing alone
_	in the channel.
f sgc	Single-phase friction factor corresponding to
-30	Reynolds number, V $\rho_{\rm gc}$ $^{D}/\mu_{\rm G}$.
f sgci	Interfacial friction factor defined by eqn
-9	(6.13).
fn(')	Used to signify that something is a function of
	the quantity contained in the brackets.
`F	Frictional energy loss per unit mass $(J kg^{-1})$.
F	Correction factor for transition lines in
	Mandhane et al. (1974) map defined by eqn
	(11.2).
F _C	Convective heat transfer correction factor in
Ū	Chen (1966) correlation.
F _G	Mass velocity scaling factor (G_{ω}/G_{f}) for Freon
G	modelling.
F ₁	Gas volume flux away from shock (see Fig. 5.3)
	$(\mathbf{m} \ \mathbf{s}^{-1})$.
F ₂	Gas volume flux towards shock front (see Fig.
	5.3) (m s ⁻¹)
g	Acceleration due to gravity $(m s^{-2})$.
G	"Mass velocity" in channel, i.e. the total mass
	flow rate divided by the channel flow area
	$(kq m^{-2} s^{-1})$.

G'	Mass flux towards wall at distance y from inter-
	face $(kg m^{-2} s^{-1})$.
Ga _{T.}	Galileo number, $g\mu_{_{\rm T}}^4/\rho_{_{\rm T}}\sigma^3$.
G _C	Condensation mass flux (kg s ⁻¹ m ⁻²).
$G_{\overline{D}}$	Deposition rate per unit surface area of film
	(in practice the surface area of film is taken
• ,	as that of the tube) $(kg m^{-2} s^{-1})$.
$G_{\mathbf{E}}$	Entrainment rate per unit surface area of film
~	(in practice, the surface area of film is taken
	as that of the tube) $(kg m^{-2} s^{-1})$.
$G_{ ilde{\mathbf{f}}}$	Mass velocity in analogous Freon system
_	$(kg s^{-1} m^{-2}).$
$G_{\mathbf{G}}$.	Gas (or vapour) phase mass flow divided by the
	phase-flow area, \mathbb{N}_{G}^{A} (kg s ⁻¹ m ⁻²).
$G_{\mathbf{L}}$	Liquid mass flow per unit area in which it is
	flowing, W_L/A_L (kg s ⁻¹ m ⁻²).
<i>G</i> ₩	Mass velocity in steam - water system (kg s ⁻¹ m ⁻²).
h	Heat-transfer coefficient (W m^{-2} K ⁻¹).
^h G	Heat-transfer coefficient between the bulk gas
.	and the liquid surface $(W m^{-2} K^{-1})$.
h _{Gn}	Gas-phase heat-transfer coefficient if no mass
	transfer is occurring $(W m^{-2} K^{-1})$.
h _i	Interface heat-transfer coefficient or effective
	coefficient arising from the molecular kinetic
	effects (W m ⁻² K ⁻¹).
h _L	Heat-transfer coefficient if the liquid were
	flowing alone in the tube $(W m^{-2} K^{-1})$.
h _L	Local heat-transfer coefficient for condensate
_	film (W m-2 K-1).
$\overline{h}_{\mathrm{L}}$	Heat-transfer coefficient for condensate film
	averaged over the vertical surface (W m^{-2} K ⁻¹).
_p ro	Heat-transfer coefficient if the total fluid
	were flowing in the tube with liquid properties
	$(W m^{-2} K^{-1})$.

h mac	Macroscopic or convective component of heat
	transfer coefficient in Chen (1966) correlation
	$(W m^{-2} K^{-1})$.
h _{mic}	Microscopic or nucleate-boiling component of
••	heat-transfer coefficient in Chen (1966)
	correlation (W m ⁻² K ⁻¹).
h _N	Heat-transfer coefficient for Nth tube from
	the top of vertical row of tubes (W m 2 K1).
\overline{h}_N	Heat-transfer coefficient averaged over N
.,	tubes in a vertical row $(w m^{-2} K^{-1})$.
$(\bar{h}_{\mathbf{L}})_{\mathbf{L}}$	Heat-transfer coefficient calculated by the
~ Nu	Nusselt (1916) analysis (W m^{-2} K^{-1}).
h _p	Planck's constant (J s).
h ₁	Heat-transfer coefficient for top tube in a
•	vertical column of tubes $(W m^{-2} K^{-1})$.
h*	Combined heat-transfer coefficient between the
•	coolant and the liquid surface on the condens-
	ing side $(W m^2 K^1)$.
H	Depth of liquid in stratified flow (see Fig.
	11.2) (m).
H	Parameter defined by eqn (18.28).
H _C .	Height of rectangular channel (m).
i ·	Enthalpy (J kg ⁻¹).
i	√ −1
ⁱ G	Saturated vapour enthalpy (J kg ⁻¹).
i _L .	Saturated liquid enthalpy (J kg 1).
ⁱ TP	Two-phase enthalpy (J kg ⁻¹).
j -	Colburn (1933) j-factor for heat transfer.
$j_{f GL}$	Gas relative volume flux, eqn (5.6) $(m s^{-1})$.
^j lG	Liquid relative volume flux, eqn (5.7)
	$(m s^{-1})$.
J _A	Molar flux of component A in mixture
	$(kmol s^{-1} m^{-2})$.

k _B	Boltzmann's constant, 1.3805×10^{-23} (J K ⁻¹).
k _E	Effective turbulent thermal conductivity
B ;	$(W m^{-1} K^{-1})$.
k _G	Thermal conductivity of gas or vapour phase
G	$(W m^{-1} K^{-1})$.
k _k	von Karman constant, 0.36.
k _L	Thermal conductivity of liquid (W m^{-1} K ⁻¹).
ĸ	'Slip ratio' or ratio of gas to liquid mean
	velocities, u _c /u _r .
<i>к</i> _D	Mass-transfer coefficient for droplet de-
D	position (m s ⁻¹).
K _M	Mâss-transfer coefficient (m s ⁻¹).
K.	Slip ratio in steam - water systems.
L .	Channel length (m).
L _b	Boiling length (m).
L _{bf}	Boiling length in analogous Freon system (m).
L bw	Boiling length in steam - water system (m).
L	Characteristic dimension of solid body (m).
m	Liquid-film thickness (m).
m +	Dimensionless film thickness, $m \rho_L u^*/\mu_L$
m m	Mass of a molecule (kg).
M	Molecular weight (kg/kmol).
n	Index in Blasius equation.
ň	Rate of production of nuclei per unit volume
•	(m^{-3}, s^{-1}) .
N	Dimensionless group defined by eqn (5.33).
N	Number of molecules per unit volume (m^{-3}) .
N	Bypass ratio: ratio of flow in the bypass
	channel to that in the heated channel.
. N	Number of tubes in a vertical row.
Ñ''	Flux of molecules (number per unit area per
	unit time) $(m^{-2} s^{-1})$.
. ^N A	Avogađro's number $(6.023 \times 10^{26} \text{ kmol}^{-1})$.
N _{EÖ}	Ectvos number (defined by eqn (5.34)).

Nu	Nusselt number, hD/k.
Nu _L	Nusselt number based on liquid thermal
	conductivity, hD/k
Nu LF	Liquid-film Nusselt number based on film
	thickness.
P	Pressure (N m ⁻²).
$p_{_{\mathbf{C}}}$	Thermodynamic critical pressure $(N m^{-2})$.
p _{sat}	Saturation vapour pressure (for plane surface)
540	$(N m^{-2})$.
P	Total power on tube at burnout (W).
P _v	Power input per unit volume (W m^{-3}).
Po	Burnout power at zero inlet subcooling (W).
Pr _L	Liquid Prandtl number, $c_{\mathrm{pL}} \mu_{\mathrm{L}}/k_{\mathrm{L}}$.
Pr _G	Gas phase Prandtl number, $c_{pG}^{\mu}\mu_{G}^{\prime k}$
q	Heat energy per unit mass (J kg 1).
q	Parameter given by $P_{v} (\rho_{L} - \rho_{G}) / \rho_{L} \rho_{G}^{\lambda} (s^{-1})$.
P	Heat release rate from condensing mixture (W).
$\mathbf{q}_{\mathbf{G}}$	Heat release rate for cooling the gas phase (W).
$arrho_{_{\mathbf{G}}}$	Gas (or vapour) phase volumetric flow (mg s 1).
$arrho_{_{ m L}}$	Liquid-phase volumetric flow rate (m ³ s ⁻¹).
Q *	Volumetric liquid flow rate per unit perimeter
	of channel $(m^2 s^{-1})$.
r	Radial distance (m).
r	Ratio of outlet to inlet velocity for two-phase
	region.
$r_{\mathtt{a}}$	Parameter defined by eqn (3.49).
r _b	Bubble radius (m).
r _c	Cavity radius (m).
r _d	Droplet radius (m).
r _f	Parameter defined by eqn (3.48).
r _g	Parameter defined by eqn (3.50).
ri	Radius at the interface (m).
ro	Tube radius (m).
R.	Universal gas constant (8314.3 J kmol K L).

Re	Reynolds number, GD/1.
Re _b	Bubble Reynolds number, $2\rho_{L} u r_{b}/\mu_{L}$.
Re _G	Gas-phase superficial Reynolds number.
Re H	Homogeneous-flow Reynolds number defined by
	eqn (4.25).
$\mathtt{Re}_{\mathtt{L}}$	Liquid-phase Reynolds number, $(1-x)$ GD / μ_{L} or
•	$4\Gamma/\mu_{L}$.
Re _{LT}	Liquid-film Reynolds number at the bottom of
	the tube.
s	Laplace transform variable defined by $\overline{f}(s) =$
	$\int_0^\infty e^{-St} f(t) dt$ where $\overline{f}(s)$ is the Laplace trans-
	form of $f(t)$ (s^{-1}) .
s	Specific entropy $(J kg^{-1} K^{-1})$.
S	Channel perimeter (m).
s _c	Nucleate-boiling suppression factor in Chen
	(1966) correlation.
<i>SC</i> G	Gas-phase Schmidt number, $\mu_{G}/\rho_{G}^{\mathcal{D}}_{AB}$
t	Time (s).
t	Dimensionless temperature defined by eqn (19.36).
T	Temperature (K).
T _b	Bulk temperature (K).
T _G	Bulk gas temperature (K).
T _s	Film surface temperature (K).
T sat	Saturation temperature (K).
$T_{f w}$	Wall temperature (K).
T ₀	Coolant temperature (K).
T +	Dimensionless temperature defined by eqn (9.37).
T _s	Dimensionless temperature drop across the liquid
	film.
u —	Velocity (often used for local velocity) (m s ⁻¹).
u	Mean velocity in condensate film (m s ⁻¹).
u b	Bubble velocity in slug flow $(m s^{-1})$.
^u G	Gas-phase or vapour-phase mean velocity (m s ⁻¹).
^u gv	Relative velocity, eqn (5.4) $(m s^{-1})$.

```
Velocity at interface (m s 1).
u,
                Liquid-phase mean velocity (m s 1).
ÚŢ.
                Liquid-surface velocity around slug-flow-
u
LS
                type bubble rising in static liquid (m s 1).
                Relative liquid velocity, eqn (5.5) (m s<sup>-1</sup>).
u<sub>t.</sub>v
                Velocity at pipe axis, eqn (5.14) (m s<sup>-1</sup>).
u<sub>m</sub>
                Slug-flow bubble rise velocity (m s 1).
u_
                Rise velocity of single bubble in an infinite
                fluid (m s 1).
                Friction velocity, \sqrt{(\tau_{\phi}/\rho_{\tau})} (m s<sup>-1</sup>).
u*
                Internal energy per unit mass (J kg 1).
                Overall heat-transfer coefficient (W m^{-2} K<sup>-1</sup>).
                Fluid specific volume (m3 kg-1).
                Gas (or vapour) phase specific volume (m3 kg-1).
v<sub>G</sub>
                Homogeneous specific volume, xv_G + (1 - x)v_T
v<sub>H</sub>
                 (m^3 kq^{-1}).
                Two-phase effective specific volume based on
v
TP
                accelerational term of the two-phase momentum
                equation, x^2v_{c}/\alpha + (1-x)^2/(1-\alpha)(m^3 kg^{-1}).
                Total superficial velocity V_{T} + V_{C} (m s<sup>-1</sup>).
V
                Vapour bubble volume per unit surface area (m).
V<sub>h</sub>
                Superficial velocity of gas or vapour phase
v_{_{\mathbf{G}}}
                (m s^{-1}).
                 Gas core velocity (equation 6.15).
                Superficial velocity of liquid phase (m s 1).
                 Dimensionless gas-phase superficial velocity
                 defined by eqn (2.3).
                 Dimensionless gas-phase velocity defined by
V*G
                 eqn (11.8).
                 Dimensionless liquid-phase superficial velocity
V*
                 defined by eqn (2.4).
                 Work done per unit mass (J kg 1).
                 Width of surface in stratified flow (see Fig.
                11.2) (m).
```

₩ .	Total flow rate in channel (kg s ⁻¹).
W _G	Gas-phase or vapour-phase mass flow rate
	(kg s ⁻¹).
W _L	Liquid-phase mass flow rate (kg s ⁻¹).
WLE	Entrained liquid flow rate (kg s ⁻¹).
W LF W	Liquid-film flow rate (kg s ⁻¹).
W ^F	Dimensionless film flow rate, $W_{ m LF}/2\pi r_0 \mu_{ m L}$.
x	Gas (or vapour) phase mass-flow fraction or
•	'quality' (taken as thermodynamic quality in
	Chapter 8).
x	Cartesian coordinate direction (m).
x _a	Quality at the onset of annular flow.
У ВО	Burnout quality.
* _d	Thermodynamic quality at bubble departure.
x _f	Burnout quality in analogous Freon system.
x _w	Burnout quality in steam - water system.
x ₀	Burnout quality at zero inlet subcooling.
x'	True quality in subcooled boiling.
x	Lockhart-Martinelli (1949) parameter
	defined by eqn (4,4).
x	Parameter defined by eqn (11.3).
X _{tt}	Lockhart-Martinelli (1949) parameter when
	both phases are in turbulent motion:
	$X_{\text{ff}} = \left(\frac{x}{1-x}\right)_{0.0} \left(\frac{\rho^2}{\rho^2}\right)_{0.0} \left(\frac{\mu^2}{\mu^2}\right)_{0.0}$
y	Distance from the wall (m).
y	Cartesian coordination direction (m).
y .	Distance from liquid surface (m).
y ⁽⁺	Friction distance parameter yu* p, /µ, .
y	Parameter defined by eqn (11.4).
Y _b	Bubble height (m).
Z	Axial distance along channel or tube (m).
z _n	Distance along the channel at the
••	inception of nucleate boiling (m).

α	Void fraction or fraction of volume occupied
•	by the gas (or vapour) phase.
α _e	Void fraction at exit of channel.
α _f	Void fraction in analogous Freon system.
αm	Void fraction at pipe axis, eqn (5.15).
α _T	Thermal diffusivity, $k_L^{\prime}/c_{\rm pL}^{\prime}\rho_L^{\prime}$ (m ² s ⁻¹).
α _w	Void fraction in steam - water system.
β	Gas (or vapour) phase volumetric flow fraction.
β	Parameter defined by eqn (9.44).
Υ	Empirical parameter in eqn (12.1).
Γ΄	Parameter defined by eqn (4.11).
Γ	Film flow rate per unit width of surface
	$(kg \ s^{-1} \ m^{-1})$.
г',	Condensate mean flow rate produced per unit length
	of tube $(kg s^{-1} m^{-1})$.
Γ_{L}	Film flow per unit width of surface at distance
_	L down surface (kg m ⁻¹ s ⁻¹).
δ _H	Thickness of equivalent laminar film for heat
	transfer (m).
$\delta_{\mathbf{M}}$	Thickness of equivalent laminar film for mass
	transfer (m).
ΔG	Gibbs free energy of nucleus formation (J).
$\Delta i_{\mathbf{i}}$	Difference between inlet enthalpy and the
	saturation enthalpy (J kg ⁻¹).
Δp	Pressure drop or pressure difference (N m ⁻²).
$\Delta T_{f d}$	Subcooling at bubble departure point (K).
$\Delta T_{\mathbf{e}}$	'Effective' wall superheat in Chen (1966)
	correlation (K).
ΔT_{ant}	Wall superheat, T - T (K).

Δr sub	Subcooling, T _b - T _{sat} (K).
ε	Turbulent eddy diffusivity (of either heat or
	momentum) (m ² s ⁻¹).
ε _H	Turbulent eddy diffusivity of heat (m3s1).
ε _M	Turbulent eddy diffusivity of momentum
	(m^2s^{-1}) .
E	Dimensionless subcooling parameter defined by
	eqn (19.35).
η	Dimensionless distance from film surface,
	y/m.
θ.	Angle between pipe axis and the horizontals
	illustrated in Fig. 3.2 (degrees or radians).
θ	Angle shown in Figs. 11.2 and 19.12 .
	(degrees or radians).
κ	Bankoff parameter, eqns (5.16) and (5.17).
λ	Latent heat of vaporisation (J kg ⁻¹).
λ	Parameter defined by eqn (2.1).
•	
λ _c	Critical wavelength (m).
λ _D	Wavelength for fastest growing waves (m).
D	
ρ λ _f	Latent heat in analogous Freon system
_	Latent heat in analogous Freon system $(J kg^{-1})$.
_	
λ _f	(J kg $^{-1}$). Latent heat in steam - water system (J kg $^{-1}$). Parameter defined by eqn (4.10).
λ _f	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹).
λ _f λ _w Λ	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹). Viscosity of air at ambient temperature and
λ _f λ _w Λ	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹). Viscosity of air at ambient temperature and pressure (kg s ⁻¹ m ⁻¹).
λ _f λ _w Λ	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹). Viscosity of air at ambient temperature and pressure (kg s ⁻¹ m ⁻¹). Gas or vapour viscosity (kg s ⁻¹ m ⁻¹).
λ _f λ _w Λ μ μ μ	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹). Viscosity of air at ambient temperature and pressure (kg s ⁻¹ m ⁻¹). Gas or vapour viscosity (kg s ⁻¹ m ⁻¹). Effective viscosity (kg m ⁻¹ s ⁻¹).
λ _f λ _w Λ μ μ μ μ G	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹). Viscosity of air at ambient temperature and pressure (kg s ⁻¹ m ⁻¹). Gas or vapour viscosity (kg s ⁻¹ m ⁻¹). Effective viscosity (kg m ⁻¹ s ⁻¹). Homogeneous flow viscosity (kg m ⁻¹ s ⁻¹).
λ _f λ _w Λ μ μ μ α μ μ μ β	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹). Viscosity of air at ambient temperature and pressure (kg s ⁻¹ m ⁻¹). Gas or vapour viscosity (kg s ⁻¹ m ⁻¹). Effective viscosity (kg m ⁻¹ s ⁻¹). Homogeneous flow viscosity (kg m ⁻¹ s ⁻¹). Liquid viscosity (kg s ⁻¹ m ⁻¹).
λ _f λ _w Λ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹). Viscosity of air at ambient temperature and pressure (kg s ⁻¹ m ⁻¹). Gas or vapour viscosity (kg s ⁻¹ m ⁻¹). Effective viscosity (kg m ⁻¹ s ⁻¹). Homogeneous flow viscosity (kg m ⁻¹ s ⁻¹). Liquid viscosity (kg s ⁻¹ m ⁻¹). Water viscosity at atmospheric temperature
λ _f λ _w Λ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	(J kg ⁻¹). Latent heat in steam - water system (J kg ⁻¹). Parameter defined by eqn (4.10). Viscosity (kg m ⁻¹ s ⁻¹). Viscosity of air at ambient temperature and pressure (kg s ⁻¹ m ⁻¹). Gas or vapour viscosity (kg s ⁻¹ m ⁻¹). Effective viscosity (kg m ⁻¹ s ⁻¹). Homogeneous flow viscosity (kg m ⁻¹ s ⁻¹). Liquid viscosity (kg s ⁻¹ m ⁻¹).

```
Density (kg m<sup>3</sup>).
ø
                 Density of air under atmospheric conditions
\rho_{\mathbf{A}}
                 (ka m^{-2}).
                 Gas-core density given approximately by
\rho_{\mathbf{qc}}
                 eqn (6.14) (kg m^{-3}).
                 Gas-phase or vapour-phase density (kg m<sup>-3</sup>).
PG
                 Homogeneous density, 1/v_{\rm m} (kg m<sup>-3</sup>).
ρĦ
                 Liquid-phase density (kg m<sup>-3</sup>).
\rho_{L}
                 Two-phase density based on the gravitational
ρπъ
                 term of the two-phase momentum equation
                 \alpha \rho_c + (1 - \alpha) \rho_r (kg m^{-3}).
                 Water density at atmospheric temperature
ρ,
                 (kor m^{-3}).
                 Surface tension (N m<sup>-1</sup>).
σ
                 Parameter defined by eqn (9.50).
σ
٥
                 Condensation coefficient: fraction of molecules.
                 hitting the surface which are absorbed.
                 Evaporation coefficient: fraction of molecules.
σ
                 leaving the surface which escape.
σ,
                 Surface tension of water at atmospheric.
                 temperature (N m<sup>-2</sup>).
                 Shear stress (N m<sup>-2</sup>).
τ
                 Transit time (s).
τ
\tau_{\mathbf{i}}
                 Interfacial shear stress (N m<sup>-2</sup>).
                 Interfacial shear stress for no mass transfer
τ<sub>in</sub>
                 (N m^{-2}).
                 Wall shear stress (N m<sup>-2</sup>).
T a
                 Wall héat flux (W m<sup>-2</sup>).
                 Convective component of heat flux (W m 2).
φ<sub>c</sub>
                 Burnout heat flux (W m<sup>-2</sup>).
\phi_{BO}
                Critical heat flux (W m<sup>-2</sup>).
\phi_{\mathtt{crit}}
                 Condensing heat flux in subcooled boiling
φ<sub>con</sub>
                Heat flux from the bulk gas to the interface
ቀ<sub>ሮ</sub>
                 (W m^{-2}).
```

φ _i	Heat flux at the liquid surface (interfacial
	heat flux at the liquid side of the interface).
$\phi_{\mathbf{n}}$	Nucleate-boiling component of heat flux
	$(W m^{-2})$.
φ _{no}	Heat flux illustrated in Fig. 8.6 (W m^{-2}).
φ _{sat}	Critical heat flux for saturated boiling
	(W m ⁻²).
$\phi_{ extstyle $	Critical heat flux for subcooled boiling
	(W m ⁻²).
Φ _G	Two-phase frictional multiplier defined by
_	eqn (4.2).
^Ф GO	Two-phase frictional multiplier defined by
	eqn (4.3).
$\Phi_{\mathbf{L}}$	Two-phase frictional multiplier defined by
	eqn (4.2).
or	Two-phase frictional multiplier defined by
	eqn (3.45) (see also eqn (4.3)).
ψ	Parameter defined by eqn (2.2).
ω	Frequency of oscillation (rad s ⁻¹).
ω _A	Mole fraction of component A in mixture.
ω_{AG}	Mole fraction of A in the gas-phase bulk.
ω AS	Mole fraction of component A at the liquid
	surface.
<u>dp</u> dz	Pressure gradient (N m ⁻³).
$\begin{pmatrix} d\rho \\ dz \end{pmatrix}_{B}$	Pressure gradient during subcooled boiling
- ·	(N m ⁻³).
dp _a	Accelerational component of pressure gradient
	$(N m^{-3})$.
$\frac{\mathrm{d}p_{\mathbf{F}}}{\mathbf{F}}$	Frictional component of pressure gradient
dz	(N m ⁻³).
$\left\{ \mathbf{d}p_{\mathbf{F}}^{}\right\}$	Frictional pressure gradient for the gas (or
dz G	vapour) phase flowing alone in the channel
	(N m ⁻³).

 $\left(\frac{\mathrm{d}p_{\mathrm{F}}}{\mathrm{d}z}\right)_{\mathrm{GO}}$

Frictional pressure gradient for the total flow flowing with gas (or vapour) physical properties (N $\rm m^{-3}$).

 $\left(\frac{\mathrm{d}p_{\mathbf{F}}}{\mathrm{d}z}\right)_{\mathrm{L}}$

Frictional pressure gradient for the liquid phase flowing alone in the channel $(N \text{ m}^{-3})$. Frictional pressure gradient for the total flow flowing with liquid physical properties $(N \text{ m}^{-3})$.

 $\left(\frac{\mathrm{d}p_{\mathbf{F}}}{\mathrm{d}z}\right)_{\mathbf{LO}}$