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Preface

Angle modulation is the generic term applied to phase modulated
(p.m.) and frequency modulated (f.m.) transmissions, and a large
variety of present day communication systems use this means of con-
veying information in analogue or digital form, and, sometimes, in
both.

The initials f.m. and p.m. are often encountered in the fields of
Radar, T.V. local and police radio, satellite transmissions etc., and the
rival amplitude modulation (a.m.) is now much less used. The early
history of f.m. with its fervent championing in the USA by Major
Armstrong (sometimes hampered, apparently, by equipment manu-
facturers who saw their sales slumping if the freedom from inter-
ference of f.m. compared with a.m. became too well known) and its
misunderstandings regarding bandwidth, which were finally resolved
by Carson, makes interesting reading.! ™

With both f.m. and p.m. the processes of modulation and de-
modulation are nonlinear so the analysis of performance of f.m. and
p.m. systems when disturbed by noise and interference has long
presented an attractive challenge to the analyst. This inherent non-
linearity means that, when decision theory is used to identify the
optimum method of combatting noise and various types of system
disturbances, a complicated receiver structure can emerge that is both
difficult to analyse and build, but it would appear that, in many
cases, conventional designs are near-optimum. Usually, rather special
reasons have to exist for the optimum detector to be implemented and,
more often, constraints imposed by date-lines and budgets force the
designer to opt for tried and tested methods of detection, with the
occasional variation in a conventional design. The analysis to be given
here refers mainly to this latter situation.

Another consequence of the nonlinear nature is that the theory has
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developed in a piecemeal fashion with different approaches being tried
from time to time. When a result is reported that accounts exactly for
the nonlinearity, th:en this is particularly satisfying, but often a tract-
able theory can only be produced by taking steps that a determined
critic can object to, and justification is strengthened by the results of
computer simulation runs or laboratory measurements that are done to
check the theoretical predictions. This is particularly the case when
interest lies in the outcome of first filtering an f.m. wave and then
demodulating it, and a survey of this problem is given here.

The monograph is principally concerned with the harmful effects
of noise and interference, and many useful results from theé large
literature that now exists are quoted. It has become customary to
include an extensive bibliography of pertinent literature, but it is
becoming increasingly difficult to keep up to date (one recently
published survey listed over eight hundred references on the phase lock
loop alone) and here a unifying theory is developed which gives formal
solutions to the performance assessment problems that are posed and
which allows previously derived results to be credited to their origina-
tors at appropriate points during an overview of the subject.

The reader is assumed to be a practising engineer or graduate student
and therefore familiar with such communication engineering concepts
as power spectra, coheren’. and incoherent detection, Gaussian noise,
error rates etc., but some of the mathematical tools used, such as the
signum function (sgn x = £ | according as x is positive or negative)
or the Dirac delta function [d sgnx/dx = 2§ (x)] may be a little
unfamiliar. The Dirac delta is the most commonly encountered general-
ised function, and the discipline of generalised function theory, as
described by Lighthill, is tacitly assumed here to gain freedom regarding
multiple operations such as interchanging orders of integration or
differentiating under the integral sign, and such steps will be taken
without further comment with all limits being assumed to exist. A
willingness to grapple with the double and quadruple integrals that
need to be evaluated is therefore desirable but the aim is always to
present a final result in as neat a form as possible so that its physical
significance is apparent and it is usable to the reader. Moreover, the
general availability of small but powerful desk calculatos has greatly
widened the class of performance formulae that can be easily handled.

In recognition of the increasing amount of data that is now trans-
mitted in digital form, the subject matter is divided about equally
between analogue and digital f.m. and p.m. signals, and the first three
‘chapters develop the underlying theory. Then attention is given to
predicting the performance of particular transmissions when disturbed
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by noise or adjacent channel interference in the situations commonly
encountered by the systems analyst.
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Chapter 1
introduction

The signal, noise, and interference waveforms to be considered are of
the narrow-band type, by which it is meant that the carrier or inter-
mediate frequency used greatly exceeds the occupied bandwidth. The
general expression for a narrow-band wave, which will appear repeatedly
in “arious guises through the monograph, is written as follows

V(t) = P(t) cos wet — Q(t) sin wot 1.1y

Here P(¢) and Q(¢) are called the in-phase and quadrature components,
respectively, and it is important to appreciate two time scales (or,
equivalently, two rates of change) associated with eqn. 1.1. The narrow-
band assumption means that £(¢) and Q(r) are to be regarded as slowly
varying in the sense that in the time T , say, taken by P(¢) and/or
Q(?) to change significantly (one-half the reciprocal Jf the occupied
bandwidth is representative of such a time period) a large number of
cycles to cos wet have gone by. The particular large number in ques-
tion depends on the ratio of centre frequency (wg rad/s) to the band-
width that happens to be used, but many hundreds or many thousands
would be typical; great precision is not necessary with this aspect of
the theory and most of our results refer to the limiting situation in
which the ratio of occupied bandwidth to centre frequency is vanish-
ingly small. A consequence of the wide disparity in time scales is that
it is often appropriate to perform an average over the time T, (thus
smoothing out the fast variations) and produce a result which is time,
dependent but which varies at the slower rate. Of course, if a long-
term time average is taken across many intervals of length T,
[symbolised oy Lim (a7,)"" 7T )dt], then only the d.c. term,

if any, is obtained.
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Retuming to eqn. 1.1, [P>(r) + Q%(H))''? is the envelope and
tan~! (Q(2)/P(t)) is the instantaneous phase, and a representation such
aseqn. 1.1 can be used for the transmitted signal as well as the wave
appearing at the receiver terminals after limiting, amplification, filter-
ing, and the addition of noise or interference have taken place.

The undistorted, unfiltered, and interference free angle modulated

signal has the form S(t) = A cos [wor + u(d)] (1.2)

where u(f) is the information-bearing phase modulation and the fre-
"quency modulation is the time derivative of u(t),i.e. p(z). It will be
supposed that some form of additive narrow-band interference accom-
panies this wave so that the receiver input is given by

V(t) = A cos [wot + u(t)] + X(#) cos wet — Y () sin wot
= R(#) cos [wot + 8(2)] (1.3)

R(¢) is the envelope and 8 (¢) is the instantaneous phase. The following
identifications can then be made

R(t) = {[A cos u(t) + X(1)}2 + {A sin u(t) + Y1)} }'/?

A sin () + Y(0) (14)
A cosu(t)+ X(t)

An investigation of system performance may be regarded as an exercise
in which certain statistical features of eqn. 1.3 are compared with the
corresponding features of eqn. 1.2 and some agfeed yard-stick (such as
a distortion level or an error-rate) is calculated as a measure of the
comparison. Depending on the demodulation method (coherent or
incoherent) and the form of the information transmitted (whether
u(r) represents an analogue signal or is a pulse train representing the
digitised form of some analogue signal) so the method of calculation of
the yard-stick can differ and, typically, interest may centre on one or
more of the following:

6(r) = tan™} [

(a) the spectral density of §(r)

(b) the probability distribution of 6 (r)

(c) the proba'bility distribution of 8 (¢ + 7) — 6 (¢) (7 a general delay)
(d) the expected number of zeros of V(¢)-

Also, with the radio spectrum becoming more and more congested
there is often a need to establish the band over which significant fre-
quency components of eqn. 1.2, or perhaps the hard limited version of
eqn. 1.3,i.e. K cos [wer + 8(#)], extend. The latter could be of inter-
est when X(r) and Y(r) (see eqn. 1.3) represent sums of the in-phase
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and quadrature components of transmissions that share the use of a
hard limiting satellite transponder with a wanted signal 4 cos [we? +
u(0)l.

For the major part of our development only second-order statistical
quantities have to be calculated, perhaps the most familiar of which
is the autocorrelation function. For V(¢) this is written

R(7) = (V()V(t + 1) (1.5)

The angle brackets { ) indicate an appropriate time average and an
ensemble average taken over any random parameters of ¥'(¢) (assoc-
iated with modulation, for example). The left-hand side of eqn. 1.5
has been shown as a function of 7 only as this will be true of the cases
to be met here. However, this does not necessarily imply that V(¢) is
stationary. .

By invoking the Wiener-Khinchine relationship the spectral density
of V(¢t) [or power spectrum: W(w) « >0] is given by taking the
Fourier transform of R(7)

W(w) = % L  R(#) cos wrdr (1.6)

With present day computing facilities this integral seldom presents
serious difficulty and here attention will be focussed on calculating
R(7) in particular cases of interest.

The brackets { ) will appear on numerous occasions and are not
confined to use when finding autocorrelation functions. Their mean-
ing will be clear from the context, and in some cases the time averaging
operation is not required. An example of this arises when item (b)
(the distribution of §(7)) is under investigation.

If a signal, such as 6(r), is sampled at some time instant ¢ =
then 6 (zo) will often have a range of possible values. The probability
Pr[d > L] that (¢, ) exceeds a threshold L can then be expressed as

Prii>L] = {1 —sgn [L—6(to)] P an

Here sgn (X) = #1 according as X is positive or negative and the
brackets { ) evidently refer to an averaging operation in which each
possible value of 8(t,) is inserted in the expression 4 {I —sgn {L —
6(to)] } and the resulting O or 1 is weighted by the probability of that
particular (¢, ) arising. An alternative way of writing eqn. 1.7 is

P> = d{-smal —e‘(ro)l}-p[é(ro)jdle‘(ron( .
- 1.



