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Preface

This 1s a textbook for a one- or two-semester course in problem solving and
program design. It is suitable for use by students with no programming back-
ground as well as those who may have had the equivalent of up to a one-
semester course in another programming language.

The earlier editions of this book represented the culmination of an eight-year
effort, partially sponsored by the National Science Foundation,! to define an
introductory-level course combining the presentation of rudimentary principles
of software engineering and object-oriented programming based on the C++ pro-
gramming language. Our primary goal is to motivate and introduce sound princi-
ples of program design and abstraction in a first programming course. Topics
such as program style, documentation, algorithm and data structuring, proce-
dure- and data-oriented modularization, component reuse, and program testing
are introduced early. The focus throughout is on the problem solving/software
design process, from problem analysis to program design and coding.

Features of the Third Edition

The third edition has been revised to be totally compatible with the ANSI stan-
dard tor C++. It introduces data type bool and the string class in Chapter 2.
There is a new appendix (Appendix H) on standard containers and iterators
that introduces vectors, stacks, queues, and lists. The section on vectors could

'NSF Instrumentation and Laboratory Improvement (ILI) Grant Number USE-9250254 and NSE
Undergraduate Curriculum Course Development (UCCD) Grant Number USE-9156079.
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be introduced right after arrays and subscripts (Section 9.2) it desired. There
are also new appendices on two popular Integrated Development Environments
(IDEs): Microsoft Visual C++ and Borland C++ Builder.

We have improved the writing style in this new edition and simplified the
presentation whenever possible. The new design and the use of color also help
to make the text more accessible to students.

The second edition contained a separate chapter on Software Engineering.
Most of the material in this chapter has been distributed throughout the book
where appropriate. The rest of the chapters follow the same order as in the sec-

ond edition.

Balancing Object-Oriented and Procedural
Approaches

Object-oriented concepts and the use of classes are introduced early in the
book starting in Chapter 1. Chapters 2 and 3 discuss the use of two standard
classes, iostream and string, and we refer to the use of classes and objects
throughout most of the text. We also introduce a user-defined money class in
Chapter 3.

We have tried to follow a balanced path between the strictly objects-first
and totally procedure-focused programming metaphors. We agree with the
objects-first concept, but not at the expense of the fundamentals of algorithm
organization and design. Students in a first course can and should be taught the
basic elements of procedural design. Our task is to do so within the context of
an early focus on the importance of data modeling, reuse, and other fundamen-
tal principles ot good sottware development.

An issue of concern to faculty is the relative order of arrays, structs, and
classes. As in the last edition, we introduce arrays and structs first (Chapter 9)
and then introduce the definition and coding of classes (Chapter 10). Some
faculty may prefer to reverse the order and this is entirely possible. The chapter
on classes uses arrays only in the implementation of class simpleString which
can be omitted or deferred until after arrays are covered.

We continue to emphasize the design of classes and data modeling in
Chapter 11, which introduces template classes, an indexed-list class, a stack
class, friend functions, and operator overloading. We also use template classes
in Chapter 13 where we discuss dynamic data structures: lists, stacks, queues,
and trees. Appendix E discusses inheritance and virtual functions. Appendix H
describes the use of the standard container classes: vector, list, stack, and
queue.

- s o s R Rty '



Software Engineering and Object-Oriented
Concepts

Many fundamental software engineering and object-oriented concepts are illus-
trated in the text: user-defined types, modeling problem domain entities and
their relationships, minimal interfaces, high-level cohesion, information hiding,
separation of concerns, parameterized components, and inheritance. Abstrac-
tion is stressed from the start. Numerous complete case studies are provided
throughout the text, which tollow a standard software development method,
from the specification and analysis of a problem to the first stage of design to
the final coding.

Issues of program style are presented throughout in special displays. The
concept of a program as a sequence of control structures is discussed in Chap-
ters 4 (on selection structures) and 5 (repetition structures). We introduced
functions and classes as early as possible at the introductory level—functions in
Chapters 3 and 6, and the use and definition of classes in Chapters 3 and 10
respectively. We also provide several sections that discuss testing and debug-

ging.

Outline of Contents

Conceptually, the text may be partitioned into three sections. Chapters 1
through 6 provide introductory material on functions and top-down design and
detailed coverage of selection and repetition structures. The connection
between good problem-solving skills and effective software development is
established early in the first three chapters. The problem-solving approach out-
lined in these chapters is applied consistently to all other case studies in the
text. Chapter 2 also contains an introduction to the basic elements of C++,
including a section on data types and abstraction. In Chapter 3, we continue
the emphasis on basic problem-solving skills with a discussion of top-down
design. The reuse of program components is discussed and additional detail is
provided on the money and string classes and their member functions.
Top-down procedural decomposition is further illustrated throughout
Chapters 4 through 6. Decision structures are introduced in Chapter 4, and
repetition structures are presented in Chapter 5. In Chapter 6, we revisit the
C++ function, introducing functions with output arguments and providing a
complete case study illustrating much of what has been learned to this point.
An optional section on recursion is also included at the end of Chapter 6.
Chapters 7 through 9 cover simple data types, input and output, and
structured data types (arrays and structs). Chapter 7 contains a more detailed
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discussion of simple data types, including additional commentary on data
abstraction as well as a description of the internal and external distinctions
among the simple types. In Chapter 9, the structured types (arrays and
structs) are first introduced. Simple searching and sorting algorithms are dis-
cussed and the use of structured types as function arguments is illustrated.

Chapter 8 provides an introduction to external file input/output.
Although studying external files may seem premature at this point, we
believe it is appropriate. Programs do not exist in a vacuum,; they manipulate
data that often come from external sources and they produce results that may
subsequently be manipulated by other programs. It is therefore important for
students to gain a relatively early exposure to some fundamental concepts
related to file input and output, as long as this exposure does not disrupt the
presentation of other essential ideas. Ot course, by the time Chapter 8 is
reached, students will have already been introduced to the basics of stream
input and output, including a minimal use of input/output manipulators
(Chapter 5).

For students with the equivalent of a one-semester programming course in
another language, Chapters 1 through 9 can be covered fairly quickly, perhaps
in as little as five or six weeks. For students with little or no background, this
coverage may take ten to twelve weeks.

Chapters 10 and 11 cover intermediate-level concepts which would nor-
mally be covered at the end of CS1 or the beginning ot CS2. These chapters
describe the definition and use of classes and class instances (objects). Chapter
11 focuses on data modeling. We begin with a discussion of multidimensional
arrays and arrays of structs and classes, and then extend our modeling capabil-
ity with illustrations of the use of class templates.

Chapters 12 and 13 cover more advanced topics in some depth: recursion
(Chapter 12), and dynamic data structures (linked lists, stacks, queues, and
trees) in Chapter 13. This material will be covered in the second semester of the
first-year sequence.

Coverage of Pointers

Pointers are introduced only where they really belong—in the discussion of
dynamic data structures (Chapter 13). The pointer is one of the more danger-
ous, relatively unprotected aspects of the C++ language and need not be an
essential part of an introductory text. Use of the new and delete operators and
the allocation and deallocation of memory cells in the heap are discussed at the
beginning of Chapter 13. We illustrate the manipulation of dynamic data struc-
tures such as simple linked lists, stacks and queues, and binary trees.
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Pedagogical Features

Several pedagogical features also enhance the usefulness of the text as an
instructional tool. These include the following;

m Consistent use of analysis and design aids such as data requirements tables
and program structure charts

® End-of-section self-check and programming exercises (answers to the odd
numbered self-check exercises are provided in the text)

® End-of-chapter self-check exercises (answers are provided)
m End-of-chapter programming projects

= Numerous examples and case studies carried through from analysis and
design to implementation

m Syntax displays containing the syntax and semantics of each new C++ fea-
ture introduced

® Program style and design guideline displays
® Detailed syntax and run-time error discussions at the end of each chapter
® Chapter reviews and review questions

Appendices and Special Supplements

Separate appendices are provided, summarizing information about character
sets, C++ reserved words, C++ operators, and function libraries (with descrip-
tions and specific section numbers). There is an appendix illustrating inheri-
tance and virtual functions, an appendix on Visual C++, an appendix on
Borland C++ Builder, and an appendix on standard containers and iterators.
Additional supplements available to instructors who use this textbook are:

®m PowerPoint slides
® [aboratory assignments keyed to the textbook
® [nstructors manual

The instructor’s manual includes the following features:

A statement of objectives for each chapter.
Answers to even-numbered quick-check exercises
Answers to review questions

Commentary on the analysis and design of selected programming projects

To order the IM, please contact your local A-W sales representative.
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The following can be obtained electronically through Addison-Wesley’s web
site: http://www.aw.com/cseng/authors/friedman/probsol3e/probsol3e.html
All programs, functions, and classes from the text
Answers to all end-of-section programming exercises
The implementation of selected programming projects

Sample exam questions

A money class
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