Problem Solving,
Abstraction,

esign Using

Third
Edition

Frank L. Friedman
Elliot B. Koffman

Problem Solving,
Abstraction,

*.“.+ Edition

Frank L. Friedman Elliot B. Koffman

Temple University Temple University

ILFFRR ¥R E e

ARV

00190063

Addison

Wesley
Longman

Reading, Massachusetts ® Menlo Park, California
New York ® Harlow, England ® Don Mills, Ontario
Sydney ® Mexico City ® Madrid e Amsterdam

Senior Acquisitions Editor: Susan Hartman

Assistant Editor: Elinor Actipis

Project Managers: The Publisher’s Group
Trillium Project Management

Executive Marketing Manager: Michael Hirsch

Composition: Michael and Sigrid Wile

Text Design: Delgado Design, Inc.

Design Supervisor: Gina Hagen

Copyeditor: Stephanie Magean

Technical Artist: Delgado Design, Inc.
Proofreading: Trillium Project Management
Cover Design: Gina Hagen

Library of Congress Cataloging-in-Publication Data
Friedman, Frank L.
Problem solving, abstraction, and design using C++ / Frank L. Friedman,
Elliot B. Koffman. —3rd ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-201-61277-1
1. C++ (Computer program language) [. Koffman, Elliot B. 1II. Title.
QA76.73.C153F75 2000

005.13'13—dc21 99-055315
CIP

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for
their instructional value. They have been tested with care but are not guaran-
teed for any particular purpose. The publisher does not offer any warranties or
representations, nor does it accept any liabilities with respect to the programs
or applications.

Cover image © Steven Hunt / The Image Bank / PNI

Access the latest information about Addison-Wesley titles from our-ﬁWOrld Wiﬂe
Web site: http://www.awlonline.com

This book was typeset in Quark 4.1 on a Macintosh G4. The fom farmhes used -
were Berkeley and Rotis. It was printed on New Era Matte. |

Copyright © 2000 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.

123456789 10-MA-03020100

To my wite, Martha

my children, Dara and Shelly

and my parents, George and Sylvia

you've made this, and everything else, possible.

FLF

To my wite, Caryn
my children, Richard, Deborah, and Robin
with much thanks for your love and support.

EBK

P - A R R R, TRCI S CEeE L e
eyl ot Ze LR nals 3 F gk Doad R R

)10101101101010110110110101
10010111000101101010 e
.0100010101110101

)101101011101010 N
10101011011010 = JEP
010010111000 14NN 0101010101011 01 i«
1010100010101 1SNEN1100101 11 L O s e
1101011010111 110101101 8101118
011010101101 01101 10TTRT .
010100101110 010101018 010°
100101000101 0NN 01100101501 ¢

10101011010113
11011010101101%
110101001011100¢
1010010100010101%]

011010110107

Preface

This 1s a textbook for a one- or two-semester course in problem solving and
program design. It is suitable for use by students with no programming back-
ground as well as those who may have had the equivalent of up to a one-
semester course in another programming language.

The earlier editions of this book represented the culmination of an eight-year
effort, partially sponsored by the National Science Foundation,! to define an
introductory-level course combining the presentation of rudimentary principles
of software engineering and object-oriented programming based on the C++ pro-
gramming language. Our primary goal is to motivate and introduce sound princi-
ples of program design and abstraction in a first programming course. Topics
such as program style, documentation, algorithm and data structuring, proce-
dure- and data-oriented modularization, component reuse, and program testing
are introduced early. The focus throughout is on the problem solving/software
design process, from problem analysis to program design and coding.

Features of the Third Edition

The third edition has been revised to be totally compatible with the ANSI stan-
dard tor C++. It introduces data type bool and the string class in Chapter 2.
There is a new appendix (Appendix H) on standard containers and iterators
that introduces vectors, stacks, queues, and lists. The section on vectors could

'NSF Instrumentation and Laboratory Improvement (ILI) Grant Number USE-9250254 and NSE
Undergraduate Curriculum Course Development (UCCD) Grant Number USE-9156079.

Vi

PREFACE

be introduced right after arrays and subscripts (Section 9.2) it desired. There
are also new appendices on two popular Integrated Development Environments
(IDEs): Microsoft Visual C++ and Borland C++ Builder.

We have improved the writing style in this new edition and simplified the
presentation whenever possible. The new design and the use of color also help
to make the text more accessible to students.

The second edition contained a separate chapter on Software Engineering.
Most of the material in this chapter has been distributed throughout the book
where appropriate. The rest of the chapters follow the same order as in the sec-

ond edition.

Balancing Object-Oriented and Procedural
Approaches

Object-oriented concepts and the use of classes are introduced early in the
book starting in Chapter 1. Chapters 2 and 3 discuss the use of two standard
classes, iostream and string, and we refer to the use of classes and objects
throughout most of the text. We also introduce a user-defined money class in
Chapter 3.

We have tried to follow a balanced path between the strictly objects-first
and totally procedure-focused programming metaphors. We agree with the
objects-first concept, but not at the expense of the fundamentals of algorithm
organization and design. Students in a first course can and should be taught the
basic elements of procedural design. Our task is to do so within the context of
an early focus on the importance of data modeling, reuse, and other fundamen-
tal principles ot good sottware development.

An issue of concern to faculty is the relative order of arrays, structs, and
classes. As in the last edition, we introduce arrays and structs first (Chapter 9)
and then introduce the definition and coding of classes (Chapter 10). Some
faculty may prefer to reverse the order and this is entirely possible. The chapter
on classes uses arrays only in the implementation of class simpleString which
can be omitted or deferred until after arrays are covered.

We continue to emphasize the design of classes and data modeling in
Chapter 11, which introduces template classes, an indexed-list class, a stack
class, friend functions, and operator overloading. We also use template classes
in Chapter 13 where we discuss dynamic data structures: lists, stacks, queues,
and trees. Appendix E discusses inheritance and virtual functions. Appendix H
describes the use of the standard container classes: vector, list, stack, and
queue.

- s o s R Rty '

Software Engineering and Object-Oriented
Concepts

Many fundamental software engineering and object-oriented concepts are illus-
trated in the text: user-defined types, modeling problem domain entities and
their relationships, minimal interfaces, high-level cohesion, information hiding,
separation of concerns, parameterized components, and inheritance. Abstrac-
tion is stressed from the start. Numerous complete case studies are provided
throughout the text, which tollow a standard software development method,
from the specification and analysis of a problem to the first stage of design to
the final coding.

Issues of program style are presented throughout in special displays. The
concept of a program as a sequence of control structures is discussed in Chap-
ters 4 (on selection structures) and 5 (repetition structures). We introduced
functions and classes as early as possible at the introductory level—functions in
Chapters 3 and 6, and the use and definition of classes in Chapters 3 and 10
respectively. We also provide several sections that discuss testing and debug-

ging.

Outline of Contents

Conceptually, the text may be partitioned into three sections. Chapters 1
through 6 provide introductory material on functions and top-down design and
detailed coverage of selection and repetition structures. The connection
between good problem-solving skills and effective software development is
established early in the first three chapters. The problem-solving approach out-
lined in these chapters is applied consistently to all other case studies in the
text. Chapter 2 also contains an introduction to the basic elements of C++,
including a section on data types and abstraction. In Chapter 3, we continue
the emphasis on basic problem-solving skills with a discussion of top-down
design. The reuse of program components is discussed and additional detail is
provided on the money and string classes and their member functions.
Top-down procedural decomposition is further illustrated throughout
Chapters 4 through 6. Decision structures are introduced in Chapter 4, and
repetition structures are presented in Chapter 5. In Chapter 6, we revisit the
C++ function, introducing functions with output arguments and providing a
complete case study illustrating much of what has been learned to this point.
An optional section on recursion is also included at the end of Chapter 6.
Chapters 7 through 9 cover simple data types, input and output, and
structured data types (arrays and structs). Chapter 7 contains a more detailed

PREFACE

vii

R e L o L o L L o e e o B L T e L T T e T e L A . T T T B L R N N R N e T T g £ arrars g g e i B i R T T I, -y

viii

PREFACE

discussion of simple data types, including additional commentary on data
abstraction as well as a description of the internal and external distinctions
among the simple types. In Chapter 9, the structured types (arrays and
structs) are first introduced. Simple searching and sorting algorithms are dis-
cussed and the use of structured types as function arguments is illustrated.

Chapter 8 provides an introduction to external file input/output.
Although studying external files may seem premature at this point, we
believe it is appropriate. Programs do not exist in a vacuum,; they manipulate
data that often come from external sources and they produce results that may
subsequently be manipulated by other programs. It is therefore important for
students to gain a relatively early exposure to some fundamental concepts
related to file input and output, as long as this exposure does not disrupt the
presentation of other essential ideas. Ot course, by the time Chapter 8 is
reached, students will have already been introduced to the basics of stream
input and output, including a minimal use of input/output manipulators
(Chapter 5).

For students with the equivalent of a one-semester programming course in
another language, Chapters 1 through 9 can be covered fairly quickly, perhaps
in as little as five or six weeks. For students with little or no background, this
coverage may take ten to twelve weeks.

Chapters 10 and 11 cover intermediate-level concepts which would nor-
mally be covered at the end of CS1 or the beginning ot CS2. These chapters
describe the definition and use of classes and class instances (objects). Chapter
11 focuses on data modeling. We begin with a discussion of multidimensional
arrays and arrays of structs and classes, and then extend our modeling capabil-
ity with illustrations of the use of class templates.

Chapters 12 and 13 cover more advanced topics in some depth: recursion
(Chapter 12), and dynamic data structures (linked lists, stacks, queues, and
trees) in Chapter 13. This material will be covered in the second semester of the
first-year sequence.

Coverage of Pointers

Pointers are introduced only where they really belong—in the discussion of
dynamic data structures (Chapter 13). The pointer is one of the more danger-
ous, relatively unprotected aspects of the C++ language and need not be an
essential part of an introductory text. Use of the new and delete operators and
the allocation and deallocation of memory cells in the heap are discussed at the
beginning of Chapter 13. We illustrate the manipulation of dynamic data struc-
tures such as simple linked lists, stacks and queues, and binary trees.

L e TPT T R { s mmiammenl E EEEl EEIE EEl IR IR

PR 1 1] T g e i

Pedagogical Features

Several pedagogical features also enhance the usefulness of the text as an
instructional tool. These include the following;

m Consistent use of analysis and design aids such as data requirements tables
and program structure charts

® End-of-section self-check and programming exercises (answers to the odd
numbered self-check exercises are provided in the text)

® End-of-chapter self-check exercises (answers are provided)
m End-of-chapter programming projects

= Numerous examples and case studies carried through from analysis and
design to implementation

m Syntax displays containing the syntax and semantics of each new C++ fea-
ture introduced

® Program style and design guideline displays
® Detailed syntax and run-time error discussions at the end of each chapter
® Chapter reviews and review questions

Appendices and Special Supplements

Separate appendices are provided, summarizing information about character
sets, C++ reserved words, C++ operators, and function libraries (with descrip-
tions and specific section numbers). There is an appendix illustrating inheri-
tance and virtual functions, an appendix on Visual C++, an appendix on
Borland C++ Builder, and an appendix on standard containers and iterators.
Additional supplements available to instructors who use this textbook are:

®m PowerPoint slides
® [aboratory assignments keyed to the textbook
® [nstructors manual

The instructor’s manual includes the following features:

A statement of objectives for each chapter.
Answers to even-numbered quick-check exercises
Answers to review questions

Commentary on the analysis and design of selected programming projects

To order the IM, please contact your local A-W sales representative.

PREFACE

LA P :i-_.:ta‘:'_-;_'._ Lo . - ... Lo
D T I e B A I I e M S O S

IX

PREFACE

The following can be obtained electronically through Addison-Wesley’s web
site: http://www.aw.com/cseng/authors/friedman/probsol3e/probsol3e.html
All programs, functions, and classes from the text
Answers to all end-of-section programming exercises
The implementation of selected programming projects

Sample exam questions

A money class

Acknowledgements

Many people helped with the development of this book. Primary contributors
to the first edition included Paul LaFollette, Paul Woligang, and Rajiv Tewari of
Temple University. Temple graduate students Donna Chrupcala, Bruce Weiner,
and Judith Wilson also contributed significantly to the development of the first
edition. Steve Vinoski provided detailed comments concerning the C++ mate-
rial in many of the later chapters. Robin Koftman contributed significantly to
the development of this edition. Jeri Hanly very graciously allowed us to adapt
material from C: Problem Solving and Program Design, 3rd Edition, co-authored by
herselt and Elliot Kottman.

The principal reviewers and class testers were enormously helpful in sug-
gesting improvements and finding errors. For the first edition, these included
Allen Alexander (Delaware Technical and Community College), Ruth Barton
and Richard Reid (Michigan State University), Larry Cottrell (University ot Cen-
tral Florida), H. E. Dunsmore and Russell Quong (Purdue University), Donna
Krabbe (College of Mount St. Joseph), Sally Kyvernitis (Neumann College),
Xiaoping Jia (DePaul University), Xiannong Meng and Rick Zaccone (Bucknell),
Jeft Buckwalter and Kim Summerhays (University of San Francisco), and Jo
Ellen Perry (University of North Carolina). Valuable proofreading and editing
assistance were provided by Sally Kyvernitis, Donna Skalski, and Frank Fried-
man’s daughters Dara and Shelley.

We are also very grateful to the principal reviewers of the second edition for
their hard work and timely responses. They include: William E. Bulley (Merit
Network, Inc.), Greg Comeau (Comeau Computing), Bruce Gilland (University
of Colorado at Boulder), William 1. Grosky (Wayne State University), Bina
Ramamurthy (SUNY at Buftalo), and W. Brent Seales (University of Kentucky).
Our thanks, also, to Temple student Niv Hartman, who helped proofread the
text and helped with the exercise solutions.

We would also like to thank Conrad Weisert (Information Disciplines, Inc.)
tor permission to use the money class and for providing the code for this class
for users of the text (see special supplements). Thanks also to Lynn Lambert,

Christopher Newport College, for preparing the laboratory manual as well as to
Michael R. Hudock, Muhlenberg College, who prepared the PowerPoint slides.

As always, it has been a pleasure working with the people of Addison-
Wesley throughout this endeavor. Susan Hartman, senior acquisitions editor,
was closely involved in all phases of the development of the manuscript, and
provided friendship, guidance, and encouragement. Elinor Actipis, assistant
editor, provided timely assistance at a moment’s notice. Amy Rose coordinated
the conversion of the manuscript to a finished book, Stephanie Magean thor-
oughly copyedited the manuscript, Brooke Albright proofread the page prootfs,
and Mike Wile handled the production of the book.

Philadelphia, PA
E. B K
FELE

PREFACE

Xi

LU LUV LUL LUV LULALLU

)10101101101010110110110101]

1010101010101101 ¢
110010111y O e ﬁ
110101101 1011318

011010101101 0110117727
010100101110 01010101 1013
1001010001010 1011001031010
101010110101113 0110101101011

11011010101101%
110101001011100%

Contents

— —

Chapter 1 Introduction to Computers, Problem Solving, and
Programming 1

1.1 Overview of Computers 2
Early Computers 2
Categories of Computers 3
Sharing Computer Resources 3
1.2 Computer Hardware 4
Memory 6
Main Memory 8
Secondary Memory and Secondary Storage
Devices 8
Central Processing Unit 10
Input/Output Devices 10
Computer Networks 11
The World Wide Web 12
1.3 Computer Software 13
Operating System 13
Application Software 16
Programming Languages 16
Object-Oriented Programming 17
.4 Processing a High-Level Language Program 20
Executing a Program 22
1.5 The Software Development Method 24
Caution: Failure is Part of the Process 26

XiV CONTENTS

1.6 Applying the Software Development Method 27
CASE STUDY: Converting Miles to Kilometers 27
1.7 Professional Ethics for Computer Programmers 30
Privacy and Misuse of Data 30
Computer Hacking 30
Plagiarism and Software Piracy = 31
Misuse of a Computer Resource 31
Chapter Review 32
Quick-Check Exercises 33
Answers to Quick-Check Exercises 34
Review Questions 35
Interview with Bjarne Stroustrup 36

Chapter 2 Overview of C++ 39

2.1 C++ Language Elements 40
Comments 40
Compiler Directive #include 41
Namespace std 42
Function main 42
Declaration Statements 43
Executable Statements 43
2.2 Reserved Words and Identifiers 45
Reserved Words 45
[dentifiers 45
Uppercase and Lowercase Letters 46
2.3 Data Types and Declarations 48
Data Types 48
string Class 52
Purpose of Data Types 52
Declarations 53
Constant Declarations 54
2.4 Executable Statements 56
Programs in Memory 56
Assignment Statements 57
Input/Output Operations 59

Input Statements 60
e Program Output 62
The retuxn Statement 64

2.5 General Form of a C++ Program 66
Comments in Programs 67

2.6 Arithmetic Expressions 69
Operators / and $ 70
Data Type of a Mixed-Type Expression 72

o) TR 2 L S T . 2abale o1
L .) R e Todn ubgee s Biiaeig L L adEERIL e . s
T P T el E RN s LD gl e g A e e N I T S A .
B Oty S T VNP L - a Ay T S e . N P R LR SRk S g R - T e Peoult . Lo L=
e PR T L il B A AT R b e RE A e B BT L LT e e W k: i i Ty fads 4 e
Gt et Bap B luenn e T R DR G ET EE Lk B Y e T T e R W H EA

Chapter 3

CONTENTS

Mixed-Type Assignment Statement 73
Expressions with Multiple Operators 74
Writing Mathematical Formulas in C++ 78
CASE STUDY: Finding the Value of a Coin
Collection 79
2.7 Interactive Mode, Batch Mode, and Data Files 84
Input Redirection 84
Output Redirection 85
2.8 Common Programming Errors 87
Syntax Errors 88
Run-Time Errors 89
Undetected Errors 90
Logic Errors 91
Chapter Review 92
Quick-Check Exercises 93
Answers to Quick-Check Exercises 95
Review Questions 95
Programming Projects 97
Interview with Josée Lajoie 100

Top-Down Design with Functions and Classes 103

3.1 Building Programs from Existing Information 104
CASE STUDY: Finding the Area and Circumference
ofa Circle 104
CASE STUDY: Computing the Weight of a Batch of
Flat Washers 108
3.2 Library Functions 113
C++ Library Functions 114
A Look Ahead 118
3.3 Top-Down Design and Structure Charts 119
CASE STUDY: Drawing Simple Figures 119
3.4 Functions without Arguments 121
Function Prototypes 123
Function Definitions 123
Placement of Functions in a Program 125
Order of Execution of Functions 127
Advantages of Using Function Subprograms 128
Displaying User Instructions 129
3.5 Functions with Input Arguments 131
void Functions with Input Arguments 133
Functions with Input Arguments and a Single
Result 134
Functions with Multiple Arguments 138

XV

PRI MR, aos eiial st - S -
A diy T b el @ e Laapibey Il gt . B L P
KOG R WyT Ty F g et -y AT SR Y, L St R

XVI

CONTENTS

Chapter 4

Argument/Parameter List Correspondence 139
The Function Data Area 141
Testing Functions Using Drivers 142
3.6 Scope of Names 143
3.7 Extending C++ through Classes: string and
money 145
The string Class 145
Declaring string Objects 145
Reading and Displaying string Objects 145
String Assignments and Concatenation 147
Operator Overloading 147
Dot Notation: Calling Functions length
and at 148
Member Functions for Word-Processing
Operations 149
Assigning a Substring to a string Object 150
The money Class 150
Header and Implementation Files for User-Defined
Classes 153
3.8 Common Programming Errors 154
Separately Testing Function Subprograms 157
Chapter Review 158
Quick-Check Exercises 160
Answers to Quick-Check Exercises 161
Review Questions 162

Programming Projects 162
Interview with Mark Hall 166

Selection Structures: if and switch
Statements 169

4.1 Control Structures 170
4.2 Logical Expressions 170
Logical Expressions Using Relational and Equality
Operators 171
Logical Expressions Using Logical Operators 172
Operator Precedence 173
Writing Conditions in C++ 175
Comparing Characters and Strings 177
Boolean Assignment 178
Writing bool Values 179
Using Integers to Represent Logical Values 180
4.3 Introduction to the if Control Statement 181
if Statement with Two Alternatives 181

S T ETEN BT T E N e

A R AT A] BT 1 R T T e

TR R ol

Chapter 5

4.4

4.5

4.6
4.7

4.8

4.9

CONTENTS

if Statement with Dependent Statement 182
if Statement Conditions with Characters and
Strings 183
Format of the if Statement 185
if Statements with Compound Alternatives 187
Iracing an if Statement 188
Decision Steps in Algorithms 191
CASE STUDY: Payroll Problem with Functions 191
A Reminder About Identifier Scope 199
Adding Data Flow Information to Structure Charts
199
Commentary—The Software Development Method
200
Checking the Correctness of an Algorithm 201
Nested if Statements and Multiple-Alternative
Decisions 203
Comparision of Nested if Statements and a
Sequence of if Statements 204
Writing a Nested if as a Multiple-Alternative
Decision 205
Order of Conditions 206
Short-Circuit Evaluation of Logical Expressions
209
The switch Control Statement 211
Proper Use of break 214
Comparison of Nested if Statements and the
switch Statement 214
Using a switch Statement to Select Alternative
Functions 214
Common Programming Errors 216
Chapter Review 218
Quick-Check Exercises 218
Answers to Quick-Check Exercises 221
Review Questions 222
Programming Projects 223

Repetition and Loop Statements 227

5.1

5.2

Counting Loops and the while Statement 228
The while Statement 228
Syntax of the while Statement 230

Accumulating a Sum or Product ina Loop 233

Multiplying a List of Numbers 236
Compound Assignment Operators 237

XVil

o t-mw-“*.ﬁ*mnﬂ.ﬂ'“r::'-"‘*:-r

Xviil

CONTENTS

Chapter 6

5.3

5.4

5.5

5.6
5.7
5.8
5.9

5.10

The for Statement 239
Increment and Decrement Operators 241
Increments and Decrements other than One 243
Displaying a Table of Values 245
Conditional Loops 247
A Loop with a Decreasing Loop Control
Variable 248
CASE STUDY: Monitoring Oil Supply 248
More General Conditional Loops 252
Loop Design and Loop Patterns 254
Sentinel-Controlled Loops 254
Calculating an Average 258
Flag-Controlled Loops 259
The do-while Statement 261
Review of while, for, and do-while Loops 267
Nested Loops 270
Debugging and Testing Programs 274
Using a Debugger 274
Debugging without a Debugger 275
Off-by-One Errors 276
Testing 277
Common Programming Errors 278
Chapter Review 281
Quick-Check Exercises 283
Answers to Quick-Check Exercises 285
Review Questions 285
Programming Projects 287
Interview with Mike Weisert 292

Modular Programming 295

6.1

6.2
6.3

Value and Reference Parameters 296
Call-by-Value and Call-by-Reference
Parameters 298
void Functions Can Return Results 300
When to Use a Reference or a Value
Parameter 300
Comparison of Value and Reference
Parameters 301
Protection Afforded by Value Parameters 302
Argument/Parameter List Correspondence
Revisited 302
Functions with Output and Inout Parameters 306
Stepwise Design with Functions 314

e L e e b b B L ATt 2 By el LV R AT

ImE el T I Fr'ERE L™

ERT R T Ty oW

