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Preface

The publication of Volume 24 of Advances in Computers continues the
presentation in depth of subjects of both current and long-range interest to
the computer and information science community. Contributions have
been solicited from widely known experts in their fields who have recognized
the significance of writing substantial review and tutorial articles in their
areas of expertise. Advances in Computers permits the publication of survey-
type articles which have been written from a relatively leisurely perspective,
and the subjects of these articles are treated both in depth and in breadth.
Advances i Computers is a series that began in 1960 and now continues in its
25th year with Volume 24. During this period, which witnessed great expan-
sion and dynamic change in the computer and information fields, this series
has played an important role in the development of computers and their
applications. The continuation of this series over such a long period of time is
atribute to the quality of presentation and to the reputations and capabilities
of the authors who have written articles for the series.

Included in Volume 24 are articles on software productivity, operating
systems, microprogramming (or firmware), pattern recognition and learn-
ing, language data processing, information retrieval, and computer science
education, all topics of substantial and growing current and long-range
interest.

In the first article Conte, Dunsmore, and Shen discuss the problems of
estimating software effort and cost. a critical problem faced by all software
project managers, anu they remind us that this problem is important for
many different reasons. In their article they discuss and evaluate several
models for software effort estimation and they attempt to compare the
performance of these models on sets of projects for which some information
is available. They conclude that further experimentation, the gathering of
more data, and the combining and enhancing of models will be necessary in
order to allow computer scientists to explain and better control the software
development process.

Dr. Michael Harrison considers the problem of data protection in operat-
ing systems. He points out that modern computer systems contain impor-
tant information and that unauthorized access can result in significant prob-
lems. He references the IRS, electronic funds transfer, and military systems
as examples. Dr. Harrison treats this problem theoretically from an operat-
ing systems point of view, and shows that there are certain inescapable .
conclusions which are not unlike the problems that one faces with respect to

Xi
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physical security. There is constant tension between the abilities of a poten-
tial criminal and the countermeasures that can be taken. He concludes
finally that the best simple technique that one can utilize is some form of
encryption method. Furthermore, he states that as time goes by it will be ever
more essential to provide some sort of security mechanisms for commercial
systems. :

Dasgupta and Shriver point out in their article that the use of micropro-
gramming for implementing control units and emulating instruction sets has
become commonplace and in fact has even become a topic of interest to
systems and applications programmers as well as to computer architects and
engineers. To emphasize the user interface of microprogramming, the term
“firmware” has been coined as a synonym. They trace the key developments
in firmware engineering and convey some of its intellectual content. In the
past ten years firmware engineering has emerged as a systematic discipline
and its central problems have been essentially solved. The issue of formal
verification, however, still remains controversial and yet it is of great impor-
tance in reasoning about the correctness of designs.

In his article on learning and pattern recognition Dr. Ranan Banerji points
out that the word “learning,” even in a limited se:.se, covers a large number
of phenomena. Dr. Banerji discusses the phenomenon whereby someone
endowed with the ability to perform a task in an inefficient manner can
improve efficiency through experience; his discussion is motivated by the
desire to write computer programs that have this capability. Banerji studies
the problem in a way that has been used previously by workers in the field of
pattern recognition, and in doing so he defines pattern recognition quite
broadly. He concludes that the study of learning has been directed to specific
tasks and accordingly many basic problems have been clarified. As this
understanding deepens, the field, likened to artificial intelligence, will de-
velop into two branches, applied and pure. ‘

Professor Paul Garvin presents a survey of the field of language data
processing, which is defined to mean the processing of natural language by
computer. His article is a critical examination of the problem areas rather
thar: a thorough coverage of the literature. Furthermore, he points out that
much of the research which goes on in this field is subsumed under other
titles such as artificial intelligence. Dr. Garvin states that the field began
about 30 years ago with great enthusiasm and promise. However, in the
interim a number of significant problems have been recognized. Neverthe-
less a continuing interest in language data processing has existed over the
years. Professor Garvin still finds language data processing in general and
machine translation in particular the most important intellectual challenge
presented to linguistics, and although not all of his colleagues will agree with
him, he believes that this has been a challenge which American linguistics
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has on the whole failed to meet. He concludes that it is difficult to expect
anything but rather dim prospects for a significant advance. ' _

In his article Dr. Donald Kraft points out that information retneval'ls’an
important part of computer science. Much effort goes into determining
where 10 store information and how to retrieve it efficiently and effectively,
and although information retrieval is not a new idea it incorporates m-ich of
the newest work in computing. The article treats information retrieval sys-
tems as a special class of information systems along with database manage-
ment and question-answering systems. The key element that distinguishes
information retrieval systems is the concept that the relevance of any given
record to any specific query cannot be determined exactly. In recent years
many commercialized systems and theoretical approaches have emerged.
He concludes that information retrieval is nevertheless an interesting and
challenging area of study and application, and it is an area currently in great
flux.

The final article by Professor William Atchison gives a brief development
of computer science education. He begins by giving several examples of the
use of early computers and research projects and points out that it was from
these research projects that courses, curricula, and degree programs arose.
Most of the early computer courses and degrees were given in graduate
schools, and, as curricula proliferated, undergraduate programs began to
develop. Some of the trends in computer science education are examined
which are important at the present time. For example, in early curricula.
courses in programming, switching theory, and numerical analysis were
emphasized. Today, in comparison, most major universities offer 5060
different courses. Current activities in computer research will have a pro-
found effect on the future of computer science education. Dr. Atchison also
points out that since computers now affect nearly every aspect of society, the
major social, ethical, philosophical, political, and legal issues related to com-
puters will be incorporated in an increasing number of curricula.

I 'am pleased to thank the contributors to this volume. They have given
extensively of their time and effort in order to provide a significant contribu-
tion to their profession. Despite the many calls upon their time and their
busy schedules they recognize the necessity of writing substantial review and
tutorial articles in their areas of expertise. Their cooperation and assistance
have been greatly appreciated. Because of the efforts of these outstanding
authors, this volume continues to display the high quality typical of this
series. This volume sho':1d be of reat value and substantial interest for many
years to come. It has heen a pleasant and a rewarding experience for me to
edit this volume and work with these authors. '

MARSHALL C. YoviTs
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1. Introduction

A critical problem faced by all software project managers is that of accu-
rate effort and cost estimation. This is obviously true for all projects subject
to competitive bidding. If the estimated bid cost is too high compared to
other bids, the contract will be lost, assuming all other factors are equal. On
the other hand, a winning bid which is too low may result in a loss to the
organization. Accurate estimation is therefore critical to all projects of this
type.

Copyright € 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved
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2 S. D. CONTE et al.

Even if the proposed project does not involve competitive bidding and is
only for internal use in an organization, realistic cost estimation is still very
important. A decision by management whether to proceed with a project
may very well be based on the project leader’s estimated cost, even though
other factors may be taken into account. The credibility of the project man-
ager is also at stake, especially if software costs are consistently underesti-
mated. Even decisions as to whether a project should be done in-house or
contracted out are likely to be affected by cost and effort estimates.

We have been using cost and effort almost interchangeably in the preced-
ing discussion, and while they are closely related, cost is not necessarily a
simple function of effort. Indeed, effort is usually measured in man-months!
of the technical staff required to complete a project. Technical staff will
normally include programmers, analysts, project leaders, and management
directly associated with the project. A cost model must, of course, convert
the technical effort estimate into a dollar cost figure, usually by computing
an average salary per unit time of the technical staff involved and multiply-
ing this average salary by the estimated effort required. It iscommon to use a
burdened average salary in carrying out this computation; a burdened salary
might, for example, include fringe benefits, some types of overhead, and
clerical support. The means of computing the burdened average salary will
vary with the organization. A cost model must also consider other direct
charges in arriving at a final cost estimate; these charges might include
computer time, travel costs, and general and administrative expenses.

It is evident that burdened cost models must take into account many
factors which are primarily environment dependent and are therefore not
easily transportable from one organization to another. Many organizations
have developed in-house cost estimation models. Of particular note are
models developed by TRW (Wolverton, 1974) and Boeing (Black et al., .
1977). In this article we will be primarily concerned with effort and cost
estimation models which are appropriate for software project development.
Project development will be meant to include life cycle phases from project
design, through system integration, to testing and software delivery. There-
fore, these models exclude the requirements analysis and specification
phases, as well as postdelivery maintenance. There is some hope that effort
and cost models so restricted can be developed which are transportable from
one organization to another. ,

In recent years, a large number of effort and cost models have been pro-
posed (see, for example, Mohanty, 1981; Section 29.7 of Boehm, 1981;
Boehm, 1984). Unfortunately, for one project or for similar projects, these

! Some may prefer “programmer-month” or “person-month,” which accurately reflects the
fact that many “man-months” are the result of work by women staff members. We intend
“man-month” as a sexless term. o
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models generally yield substantially different estimates of cpst and/or effort,
and while we would expect some differences because of the imprecise nature
of most models of physical processes, the differences are too great to inspire
much confidence in their general usefulness. For example, Mohanty (192} 1)
compared some 20 cost models using a hypothetical software system, which
consisted of some 36,000 executable machine language instructions. Insofar
as possible, all of the data supplied about the system were the same for all
models, including a burdened cost per man-year of $50,000. The estimated
costs of the various models ranged from a low of $362,500 to a high of
$2,766,667, nearly an order of magnitude difference. _

In the remainder of this article we will review and, wherever possible,
critically evaluate a number of cost and effort models. We are actually more
interested in the methodology than in the specific models. Herce, we will
group models, insofar as possible, into categories depending on the method
used in deriving the model. We shall use four categories: (1) historical -
experiential models, (2) statistically based models, (3) theoretically based
models, and (4) composite models. Before discussing specific models, it is
useful to develop criteria for judging the goodness of a model. The following
are considered useful criteria:

1. Validity. Does the model give reasonably close estimates at least on
the validating database? Are measures of confidence given for the estimates?
Is the model applicable to the project under consideration?

2. Objectivity. Are the estimates based on measurements and data that
are reproducible? Do they depend on subjective factors that can vary signifi-
cantly with different human estimators?

3. Euaseof Use. Are the data needed for the model easy to obtain? Are too
many data needed? Does the effort necessary to gather the needed data
require an unacceptable amount of overhead? Is the information needed
available early in the life cycle?

4. Sensitivity. Does just a small change in one or more input parameters
lead to a relatively greater change in the model estimate?

5. Transportability. Is the model so dependent on local data that it
cannot be used in a different environment?

To aid the reader, Table I lists all the metric identifiers used in the re-
mainder of'this article and a brief description of each. As much as possible we
have chosen one identifier for a metric and used it throughout. For example,
even though several authors have used several symbols for “programmer
effort,” we have selected the most common E and use that when discussing
any model. This means that some of the formulas appearing in thisarticle are
cosmetically different from their representation in the referenced work. But,
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TaBLE |

NOTATION USED FOR METRIC IDENTIFIERS

PRED(r)
RE

RE
RMS
RMS

)

~ \l)\!..c’)

a, b cd
m(X)
n i, j, k,m

Cost matrix (Wolverton); technology factor (Putnam); communica-
tion paths (Thebaut)

Estimated technology factor

Difficulty metric (Putnam; D = K/T?)

Difficulty metric (Halstead; D = m/2 X Ny/n,)

Actual development effort in programmer-months

Predicted (estimated) development effort

Programming effort :

Coordinating effort

Effort complexity class

Productivity index

Total life cycle effort (Putnam)

Predicted (estimated) total life cycle effort

Productivity in LOC/programmer-month

Average productivity for multimodule programs

Group productivity

Magnitude of the relative error (=|RE))

Mean magnitude of the relative error

Unique aperator metric

Unique operand metric

Vocabulary metric (5 = nm+mn)

Total operator metric

Total operand metric

Program size metric (N = N, + N,)

Number of programmers on a team

Average number of programmers on a team

Prediction at level r

Relative error

Mean relative error

Root mean square error

Relative mean square error

Program size in thousands of lines of code (KLOC) (general); Stroud
number (software science)

_ Program size in lines of code (LOC)

Time for development
Predicted time for development
Volume metric

Constants

Effort adjustment multiplier
Indices

Independent variable
Dependent variable

. e i e v
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we believe the added clarity and aid to comprehension outweigh this minor
disadvantage. Note that in.a few cases one identifier (e.g., C) is used.for more
than one metric. In those cases context should make it clear which is in-
tended.

2. Measures of Model Goodness

There are many measures which have been used to compare the perform-
ance of dittcrent models (see, for example, Thebaut and Shen, 1984). All of
them have hmitations and strengths. The following measures have been
foumi 1o be most useful in our work. In this section we denote the actual
etfort cxpended on a software project by E and the effort predicted by a
model by 7.

2.1 The Relative Error (RE) and Mean Relative Error (RE)
We define the relative error by

RE =(E— E)/E 2.1

The measure RE can be negative or positive. If £ > E then RE < 0, while if
E < E then RE > 0. Note that when RE > 0 it must be between 0 and 1,
while when RE < 0 it is essentially unbounded in magnitude. We can also
define the mean relative error of a set of n projects by the formula

=— 2 RE, 2.2)

x—l
If a model is a good representation of effort  expenditure, then it will lead to
small values of RE and generally to a small RE. However, since it is possible
that large positive REs can be balanced by large negative REs, a small RE

may not imply that a model is a good one. Hence, this measure is not t00
useful in practice.

2.2 The Magnitude and the Mean Magnitude of the Relative Error

In view of the problem with RE and RE discussed in the preceding section,
we define

MRE = |RE|=|(E — E)/E| (2.3)
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Thus, the smaller the value of MRE, the better the prediction. For a set of
projects we can compute the mean magnitude of the relative error by

MRE =~ 3 MRE, 24)
n

im=1

If MRE is small, then the model produces, on average, a good set of predic-
tions. However, even when MRE is small, there may be one or more predic-
tions that can be very bad. Most researchers consider MRE < 0.20 as accept-
able for effort prediction models. ’

2.3 Prediction at Level r [PRED(r)]

Let k be the number of projects in a set of n projects whose MRE < r. Then
we define this measure as .

PRED(") = k/n 28

For example, if PRED(0.25) ='0.83, then 83% of the predicted values fall
within 25% of their actual values. Most researchers have concluded that an
acceptable criterion for an effort prediction model is PRED(0.25) = 0.75. Of
course, this measure would also permit some extremely poor predicted
values. In particular, there is no limit on the MRE of the other estimates
which exceed 25% of the actual values.

2.4 The Relative Root Mean Square Error (RMS)
Given a set of # projects, we define .
- iz
E= ;; E,
ang
RMS = [_l_i (E;,— E )2]1/2
n& ! B
The relative root mean square error is defmed by
RMS = RMS/E (2.6)
We consider an RMS < 0.25 as acceptable.

2.5 A Comparison of Measures

Unfortunately, the three primary measures [namely, MRE, PRED(7), and
RMS] are often not in agreement for a set of projects in the sense that one or
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A COMPARISON OF MEASURES OF GOODNESS

Dataset  No. projects MRE PRED(0.25) RMS

1 23 0.16 0.78 0.34¢°
2 28 0.19 0.75 0.51
3 15 0.16 0.80 0.30¢
4 19 0.11 1.00 0.13
h) 17 0.14 1.00 0.20
6 33 0.27¢ 0.64¢ 0.46°
7 40 0.24¢ 0.73¢ 0.95¢
8 12 0.282 0.83 0.12
@ Measure is ‘“‘not acceptable.”

more may be unacceptable while others are acceptable (based on criteria
detailed in the three previous sections). One model that we have tested led to
the measures shown in Table II. From these projects it appears that the RMS
measure is more conservative than the MRE measure, although this is not so
for set 8. Moreover, the more heterogeneous the projects in a data set, the
worse the RMS measure is likely to be. This conclusion is based on the fact
that the RMS measure is acceptable only on sets 4, 5, and 8, which are the
only homogeneous sets in the table. On the other hand, there appears to be
closer agreement between MRE and PRED(0.25). Indeed, if we term the
simultaneous satisfaction of the two measures

MRE = 0.20 and PRED(0.25) = 0.75 2.7

as constituting acceptable performance, then the model performance is ac-
ceptable on sets 1 - 5 but not acceptable on sets 6 - 8. On the whole, however,
the MRE and PRED(r) measures appear to suggest overall acceptable per-
formance of the model while the RMS measure leaves the performance in
some doubt. In the remainder of this article we shall base decisions on
acceptable performance on the criterion defined by Eq. (2.7).

3. Historical - Experiential Models

Most of the cost estimation methods in common use today undoubtedly
fall into this category. In its crudest form, one or more local experts are asked
to make judgments about the effort required, either for the total project or for
modules into which the project has been divided. In doing so, the experts rely
on their own experience with similar projects or modules, on intuition, and
possibly on historically maintained information about completed projects.
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If more tk .n -1 expert is involved, then a simple or weighted average of
their estin:utes .. taken asa “best” starting estimate. This is, of course, a very
subjective procedure which is highly dependent on the competence and
objectivity of the estimators. Clearly such a procedure runs the risk of over-
looking some especially difficult subtasks, which may be unique to the
current project. On the other hand, an ‘expert can incorporate into his esti-
mate unicue strengths or weaknesses of the local organization that would
be djflicult for a general-purpose estimatar, which is likely to be based on
averdge organizational characteristics. ,

The expert judgment and analogy methods described above can be ap-
plied at either the overall system level ¢+ at the system component level.
These are commonly referred to as tor uown estimating (overall system) or
bottom-up estimating (system coraponents). In top-down estimating, the
focus is on the system level and has'th 2 u antage that the cost of system level
functions, such as integration, documentation, and management, will more
likely be taken into consideration. In bottom-up estimating, the system is
broken down into modules and/or components. An estimate is then made
for each component. The estimates are summed to obtain an overall esti-
mate atér allowing for proper component integration. Bottom-up estimat-
ing has the apparent advantage that components are generally examined at a
more detailed level, implying that a better estimate should follow. On the
other hand, bottom-up estimating may overlook the effort required for
system integration and testing. While all effort estimation techniques can
theoretically be applied either as top-down or bottom-up procedures, some
lend themselves more naturally to one of these procedures.

Ofthe historically based models that have been described in the literature,
the TRW Wolverton model ( Wolverton, 1974) is probably the best known. It
derives the system development cost from a software cost matrix. An exam-

ple is shown in Table III. The elements of the matrix are costs which are

TasLE III

AN EXAMPLE OF THE COsT MATRIX

Level of difficulty
OE OM OH NE NM NH

Type =~ 1 2 3 4 5 6
i+ 1. Conptrol 2127 30 33 40 . 49
2 Yo, / 17 24 27 28 35 43
3 Pre/postprocessor 16 23 26 28 34 42
4 Algorithm 15 20 22 25 30 35
5 Datamanagement 24 31 35 37 46 §7
6

Time critical 75 75 75 75 75 75

DRSS




