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PREFACE o

ALTHOUGH the field of electrolytes still has a vital and stimulating appeal for
_research scientists, it has rarely been discussed in Congresses held over the
past few years. ‘

Apart from the * General Discussion * on the interactions in ionic soluuons
held in September 1957 at the Faraday Society, Oxford, no post-war Congress
_of international standing has dealt with electrolytes. '

But there are obwiously several reasons for holding the Symposium on
electrolytes within the frame of the 47th Reunion of the Italian Society for

Scientific Progress (Societd Italiana per il Progresso delle Scienze; S.IP.S.). .

Some aspects of this subject either were not taken up in the discussion in the
* Autumn of 1957 by the Faraday Society or, if they were, a wider examination
. and estinlate of successive or collateral developments appeared to be oppor-
tune and justified.

Only a few indications can, of course, be given as examples here; the
consideration of molecular forces at short range, above all active in the field
of concentrated solutions; the treatment of some typical cases. of ionmic
equilibrium in non-aqueous or mixed solvents; the quantitative elaboration

of some basic problems (such as the accurate numerical solution of the -

Poisson-Boltzmann equation and the calculation of some thermodynamic
quantities of strong electrolytes); the behaviour .of polyelectrolytes in the
electrical field; the ultrasonic behaviour and the ion-solvent interaction. But
the wide, fundamental studies in the field of electrical conductance should,
in particular, be indicated with the brilliant results obtained during the last

five years mainly due to R. M. Fuoss, C. A. Kraus, L. Onsager and their

schools. It is not only a question of notable theoretical devdopments which
arc really conclusive, but, ¢ granted the high precision obtainable in eon-.«
ductance work, of a powerful instrument for the penetration of the moiecular
structure and the interactions.’ R
Finally, another justification—but not the last—should be noted. W:th» :
this Symposium, the S.IP.S. wanted o remember Svante Arrhenius on the

centenaryofhubmh and to give homage to PeterDQbye—-themainanthorz. '

of the electrostatic theory of electrolytes~-who, by his active pgtumpaﬁgp in
the Symposium, has stirred up extensive and lively interest in it..In this' way
the Symposium brings together the two most nnportant nam;gth&m

lyte field.
The S.L.P.S. expressesnskeenappredauonandmﬁmdctok.M.Fm
‘who has with devoted care undertaken the samﬁﬁc otpmnﬁon Ofﬁe :
- Symposium.
~ September 1961

BPBSCB’
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MOLECULAR FORCES

P. DeBYE
Cornell Univeg@ity, Ithaca, New York, U.S.A.

NOWADAYS it is a foregone conclusion that all molecular forces are electrical
in origin. If this is accepted we can try to order the different types of such -
forces starting with Coulomb’s fundamental law of electrostatics. According
to this law the potential energy between two charges is proportional to the
first power of their reciprocal distance , so we are dealing with long-range
interaction. This interaction decreases so slowly with increasing distance
that a gas of constant density of particles with a Coulombic interaction could _
not exist. Oneofthefnndamcntalparamcterstobeoonmderedmthed:s-
cussion of the equation of state and in the classical Van der Waals® approxi-.
mation connected with his parameter g, is the potential energy of one mgle-
cule with respect to its surroundmgs The mtcgral

J‘ dr

r

in which dr is an element of volume, diverges if r becomes infinite, so the
potential energy of that single molecule we are considering would increase
to infinity with increasing volume of a gas of such particles. If we had a
sphere of radius R and we would suppose our gas with Coulombic inter-
action to fill that sphere with constant density, this situation -could not
persist since every particle would be pushed away from the center with a
force proportional to the distance from this center. We know that this is
what actually happens, for an electrical charge on a conductor is wholly
distributed on its surface.

" The Coulombic long-range interaction, however, can lead to an equilibrium
situation of constant particle density, when we mix positively and negatively
charged particles in such a way that the total charge of the assembly is zero.
This is the situation which exists in a solution of a totally dissociated electro-
lyte. However, we have to recognize that under the influence of the Coulombic
forces some long-range order of the relative arrangement of positive and
negative particles must exist. In the immediate vicinity of a positive particle
and in the average, more negative than positive particles will be found and
vice-versa. At the same time it is clear that this arrangement will depend
strongly on the kinetic energy of the particles, that is on the temperature.

.x. - . .
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- HereIdo not have to repeat the argument which in 1923 led to the recognition ‘
that the size of the ionic atmosphere which surrounds every ion in a solution,

which contains per cm® a mixture of n, ions of charge ¢,, n, ions of charge ¢,,

etc., can be characterized by a length 4 to be calculated from the relation

1 4z
228 Ny 2
2 DkTZn‘e‘

in which D is the dielectric constant of the solvent, k¥ Boltzmann’s constant
and 7 the absolute temperature.! For a millimolar solution of a uni~univalent
electrolyte in water with a dielectric constant 80 this is very nearly 100 Aat
- room temperature, - ‘

In the sem 3 ng! we recognize the equivalent of and the basis for
G. N. Lewis’s ionic strength. The fact that A itself is proportional to the
reciprocal of the square root of the total concentration we can recognize
as the rzason why the activity of an ion in diluted solutions decreases also
proportionally to the square root of the concentration. However, this
dependence on the square root not only exists for quantities which are
important for reversible processes at low concentrations; it also crops up in
irreversible processes. Kohlrausch deduced this dependence, long before
any theoretical reason for it was known, as the best representation for his
experimental results on the conductivity of solutions of strong electro-
lytes.? ® Taking it for granted that in such solutions it is not the degree of
dissociation (which is very nearly 100 per cent) but the mobility of the ions
which decreases with the concentration, leads to a consideration of the
effect of the ionic atmosphere on the mobility. It is well known how, also
in 1923, the discussion of this interaction furnished an explanation of the law
of Kohlrausch and how largely due to the continuing efforts of Onsager and
Fuoss the conductivity—concentration relations due to electrostatic inter-
action now are well established and thoroughly understood.* The same
concept has also led to the understanding of two newer effects: the Wien
effect® which is based on the increase of the ionic mobility with the field
strength and the dependence of the conductivity on the frequency, as pre-
dicted together with Falkenhagen,® which depends on the existence of a
finite relaxation-time of the ionic atmosphere.’

There is no doubt that the Coulombic interaction of the ions is the clue
to the understanding of the behavior of solutions of strong electrolytes as
long as highly diluted solutions are being considered. However, it is equally
evident that for more concentrated solutions other molecular interactions
of shorter range begin to be important. When we wish to develop a theory
of electrolyte solutions which can be applied to higher conceatrations, it
becomes imperative to consider next to Coulombic all these other molecular
. interactions. ,

An electric structure one step more complicated than a single charge is the
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dipole, with zero total charge but finite moment. A high percentage of all
molecules carry permanent electric dipole moments. If two such molecules
of dipole-moment y are at a distance r their mutual potential énergy is
proportional to u?/r® and is at the same time a function of their mutual
orientation. Averaged over all possible orientations with no preference
for any special situation the potential energy is zero. However, if two such
molecules are at shorter distances from each other there is a preference for
orientation, which makes the relative orientations with negative potential
energy more probable than those for which this energy has positive values
and this preference will be the more pronounced the lower the temperature is.
All in all we are therefore led to a finite average potential energy of a central
molecule in a surrounding gas of constant density. However, this potential
energy is a function of the temperature, it goes to zero when the temperature
is high enough. All the experimental evidence conrnected with the equation
of state does not give support to such a model. Part of the interaction of
polar molecules will certainly be of the type here considered, but theré must
still be another interaction which gives a mutual Van der Waals® attractxon,
and which is essentially independent of the temperature. .
Such independence becomes understandable if we remember the fact that

all molecules are polarizable. The polarizability « of a molecule is defined
as the quotient of the electric moment it acquires and the electric field which
induces this moment. In a gas containing n molecules per cm?, the so-defined
polarizability is connected with the refractive mdex v by the relation

v2—1 = 4zna

It has the dimension of a volume and is of the same order .of magnitude as
the actual volume occupied by the molecule which itself is connected with
Van der Waals® constant . If such a molecule is brought into an electric

field to a place where the field-strength is E, its potential energy due to its
polarizability is

.2
2E

Sihce the electric field around a polar molecule is proportional to 1/r%, two
such molecules, each being polarizable, will show a negative and therefore
attractive interaction-energy proportional to 1/rS. This interaction energy
will have a finite average value when avetaged over all onentauons, even
when no preference of orientation should exist.

This was the way by which temperature-independent attracnon as a result
of electrical interaction was introduced.® However, not all molecules carry
permanent dipole-moments. The remark that molecules with charge zero
and dipole moment zero could and will still carry an electrical field around
them due to a quadrupole moment is no way out. This is clear as soon
as we think of monatomic gases which consist of atoms in which the average

: LY 32
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negative charge density has central symmetry around the positive nucleus

| with the result that the outside electric field vanishes altogether.

At this point in the development, London? saved the situation by remarking
that we should not apply classical Maxwell theory but quantum theory and
accept that even around atoms of a monatonic gas, the same as for all kinds
of molecules, there is an instantaneous and rapidly changing electric field,
that will polarize a neighbouring atom or molecule. The radiation which
according to Maxwell’s equations is unavoidable in such a case, does not
exist in reality. For large enough distances the instantaneous field will be
that of a dipole and, just as in the case of the permanent dipole, we will end
up with a mutual energy of attraction which for large distances is propor-
tional to the reciprocal sixth power of the distance and which is universal.

Tt is interesting to see how much experimental evidence is available for this
molecular attractign and its electrical interpretation.

In the field of chemistry it can be remarked that when in a mixtare of two
liquids, like for instance water and ethylether, the last component is salted
out by the addition of a salt, this effect is a demonstration of a potential
energy measured by —(z/2)E%. For around the ions in which the salt'is
dissociated we will have very strong and inhomogeneous electrical fields
of a field strength of the order of 10°V/cm even in water with its high
dielectric constant. Around every ion a separation of molecules will occur
because the more polarizable are attracted more strongly to positions of

‘high field strength in the immediate vicinity of the ions. Recently, Prock and

McConkey'® have shown experimentally that such a separation occurs
under the influence of an artificial inhomogeneous electric field in the case

. of polystyrene dissolved in cyclohexane.

In the van’t Hoff laboratory in Utrecht as well as in other laboratories
it has been possible to show experimentally the existence of Van der Waals’
forces between plates of different materials at large distances of the order
of the wavelength of the light. Especially convincing are experiments pub-
lished in Physica 1958,24, 751, by M. J. Sparnaay in which the Van der Waals’
attraction between metal plates was measured. Here it is shown that the
London force per cm? of opposing metal plates is froportional to the
4th power of their reciprocal distance. Even the observed absolute magnitude
of the force coincides with Casimir’s theoretical prediction.'* At a distance
of 3000 A it is still 1-6 dyn/cm?.

Finally, it has been shown recently that the range of.molecular forces can
be measured by observing the angular dissymmetry of light scattered in the

_ vicinity of the critical point. The theoretical background of this development

is already contained in the thesis of Zernike (Amsterdam 1916), in which
attention is dfawn to the fact that thermal density flactuations in n_eighb'oring )
points of a liquid cannot be totally independent from -cach other ‘but must - -

show correlation. The average correlation-distance usually is only of the
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order of a few molecular diameters as shown experimentally in the case of
X-ray scattering of liquids. However, this distance becomes much larger in
the vicinity of the critical point. A convincing demonstration of the existence
of such large correlation-distances is provided by experiments of Zimm®?
and of Fiirth and Williams."* In boh cases the angular distribution of visible
light scattered by liquid mixtures in the vicinity of their critical mixing point
was investigated. Especially in the case investigated by Zimm (carbon
tetrachloride and perfluoro-methyl-cyclohexane) concentration of the
scattered intensity in the direction of the primary light was observed which
increased strongly when the temperature approached the critical temperature.
From this dissymmetry the correlation length, in this case pertinent for
fluctuations of composition, can be calculated and reaches about 1400 A for -
a temperature distance of 0-02°C from the critical temperature. It can be
shown that between this correlation-length L and the range of molecular
forces / the relation

2 '

holds, in which T is the absolute temperature and 7, the critical temperature.’*
The range / in Zimm’s mixture is 14-7A. We have here the interésting case
that a length of the order of 10 A-can be measured as a result of an inter-
. ference effect observed in using waves of a wavelength of the order of 3060 A.
It is probable that in favorable cases not only the range but the curve repre-
senting the mutual energy between two molecules as a function of their
distance apart may be -derived from the angular intensity distribution of the
scattered light. _ .
1t. seems to me that essential progress in the theory of concentrated solu-
tions of electrolytes can only be achieved if sufficient attention is paid to the
existence of short-range molecular forces on top of the long-range Coulombic
interaction. It is for this reason that I have given preference to the general
subject of molecular forces as an introduction to the deliberations of this
symposium. ‘

L4
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TOPOLOGICAL METHODS.IN THE
CLUSTER THEORY OF IONIC SOLUTIONS

EMMANUEL MEERON*

Boeing Scientific Research Laboratories,
Seattle, Washington

THE TWO methods most often employed in the theoretical evaluation of
radial distribution functions and potentials of average force in ionic solutions
are, first, solutions of certain integral equations and, second, expansions in
powers of ion number densities. The second method may also be used for
direct evaluation of osmotic pressure in ionic solutions.! The terms evaluated
by Mayer were later shown to form the first member of a gemeral sefies in
which the Debye-Hiickel limiting law is the Zeioth order term. Similar
expansions were obtained for potentials of average foroe and radial distri-
bution functions.? On the other hand, the evaluation of potetitials of average
foree through solution of integral oquations, as was dohe for example by
Kirkwood and Poitier,? can be done figorously only for completely linearized
equations, for which sﬁpt‘t‘p(:sition in Poténtials ‘of average force, called the
Kirkwoed superposition pnnci;ﬂe is Tigorously valid. The Kirkwood
superposmon pfmdipte however, "becomes just an ad hoc approximation
when it is used ‘in ‘the exict, Hon-linearized equations. Solution of the
fitearized integral ediigtions for Coulombic systems yields just the Debye-
Hiickel screened potentlal, thus showing that the Kirkwood superposition
principle, implicit in the original formulation of the Debye-Hiickel theory,
is valid for this linearized form of potential of average force. The present
paper is concerned mainly with the evaluation of all terms in the particle
number density expansion of potentials of average force for which the
Kirkwood superposition principle is valid. We shall see that these terms
are given by the solution of a new integral equauon Furthermore, departures
from superposition will be shown to be given by a series of cluster integrals -
remarkably similar to the original density expansions which give us departures
of the actual system from ideality. Thus, in a sense, we have here a com-
bination of the two basic methods for evaluation of potentials of average
force and distribution functlons However, we would like to note that the

* Present address: Reseatch Department, ‘Atomics International, Canon Psrk,
Cahfomia.

7.



8 , EMMANUEL MEERON

developments which we shall discuss are by no means complete. Our prin-
cipal aim here is fo note the possibilities of some new lines of thought.

In describing a multicomponent system such as an ionic solution, we shall
find it convenient to use a contracted notation.

. r=ny!n,l...n! ¢}
X" = X, e @
[1d@) = [..] fiz,.oon i )P, ®
1 n

Here the boldface letter n denotes a set of n particles of s kinds, #; of kind i,
The boldface letter x denotes a set of quantities pertaining to the s kinds of
particles, such as a set of s number densities. Using this notation we can
write out the expansions of the potential of average force, radial distribution
function and osmotic pressure in solutions:

g(ik) = gu(Ry)= cxp{—k—li, U(ik)} [1 + Z—"’.—: f P(ik;n)d(n)] L@

=
16 = exp{ = UG} -1 ©®

14

P = P1,P2ses Ps fON number densities.

Here g(ik) denotes the radial distribution function of barticles iand k.
U(ik) is the direct interaction potential of particles i/ and k. The integrands
P(ik; n), called P-sums, are sums of certain products of f-functions, f(JI),
defined in terms of topological connexions among particles of the set # and
particles i and k. We say that two particles, such as j and /, are directly
connected when the ffunction containing their coordinates appears in the
product. Then the P-sum is defined as the sum of all possible products of
f functions in which every particle of the set n is connected independently
to both particles 7 and k, that is, in which we can pass from every particie
of the set n to particles / and k by paths involving different sets of intermediate
particles. These sums may be represented graphically. In Fig. 1 we have 2
graphical representation of products appearing in the integrands in the first
and second terms of our expansion of the radial distribution function. Each .
particle here is denotéd by a small circle, called a node, and each f-function
containing the relative coordinates of two given particles is denoted by a
heavy line connecting the corresponding nodes. The numerical ‘coefficients
before each graph denote the number of times a corresponding product
appears in the P-sum, and are a direct result of the fact that products
corresponding to topologically identical graphs, differing only in the num- '
bering of particles of the set u, give the same result on integration. We note

* that when the number densities tend to zero, the radial distribution function
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becomes simply the well-known Boltzmann factor which represehts the prob- -

ability of finding the two particles at the given relative configuration, if these
two particles constitute the entire system. Thus the first term in the density
expansion of the radial distribution function includes the statistical effect
of the simultaneous interaction of particles i and k with a third particle;
the second term includes the interaction with two other particles, and so on

1

. Plk;1) = £(in 1K) = /\

i k

1 2
P(ik;2)=2[ I+zVI+2N+m+N
i k C
. . z : -
. ) : B
. $ome grophs in vP(ik;3){ PQ %& @
. ' i k '

The potentlal of average force acting between particles i and k, denoted
here by W(ik), is related to the radial distribution function in the same way
as the direct pair potential is related to the Boltzmanx factor.

% W(ik) = Wy(Ry) = — kT In g(ik) , (6) '
b= cxp{—i— Wi} ()
W) = UGk~ kT Qs m) ®
2l

It has been shown that the potentml of avemge force can be expanded in
powers of particles number densities as shown here. The Q-sums, Q(k; ),

are sums of products of f“functions, defined in the same way as the P-sums, _
_Yut with the further restriction that particles of the sét » must be connected

among themselves without involving the two particles i and k. Graplis
describing some of the Q-sums are given in Fig. 2. As we see, the last graph
of the second P-sum is missing from the corresponding Q-sum becaiise in
that graph particles one and two are not connected one to the other without
involving particles # and k. The pressure or, in the case of a solution, the
osmotic pressure can likewise be expressed in terms.of a density expansion.

/
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]

P
o= i .A(p)] v, A0= > L [Rexe-n
! =—kTVA(G) V B e (19)

1

Qik;1) = Plik;1) = /\

i k

(o X)

Fio. 2

The integrations here are carried out over the coordinates of all particles
of the set n, except one, with respect to the coordinates of that one particle.
The integrands R(n) are sums of all possible products of f-functions in which
every particle of n is connected to every other particle of this set by at least
two independent paths. These are depicted graphically in Fig. 3. The expan-

R(2)= o—o R(3)'A R4) = 3 D+ GZ-«- &

sion A(p) itself has a definite physical meaning, since the Helmholtz con-
figurational free energy is simply related to it, as seen from the last equation
here. The chemical potentials of the individual species can likewise be easily
obtained from the free energy. The cluster integrals in all three of these

expansions diverge for ionic solutions owing to the long range of the Coulom-
" bic forces. By proper classification and summation of graphs the cluster
expansions are converted into convergent expansions in which the Debye-
Hiickel screened potentxals appear instead of the direct Coulombic interaction
potentials.?

W(ik) = U‘(ik)+e,e —kT Z 4 f G(zk,u)d(n) ~(11)

s 21
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1 - K
W(jl)—exp{—ﬁ [v (ﬂ)+e,e,° ]}4:(11) 1 (2
k(D) e 13
J “1% DkTr A
4n
N W
j=1

Here U*(ik) is the short-range non-Coulombic interaction of ions { and %,
e, and e, are the charges on ions i and k, respectively, and D is the dielectric
constant of the solution, The functions &(ik; n) are sums of products of
functions w(jl) and k(jl); that is, y-bonds and k-bonds. These products are
defined just like the Q-sums which appear in the density expansion of the

potential of average force, but connexions are now made through all com- -
binations of w-bonds and k-bonds. However, a further restriction is now
imposed by excluding all graphs which involve chains of k-bonds, that is,
rows of ions eaeh of which is connected only to the preceding one and to the
following one by k-bonds. We say that all k-bonds in our graphs are isolated.
Examples are represented graphically in Fig. 4; the solid lines denote y-bonds,
and the dashed ones describe k-bonds. We see here examples of the excluded
type of graph which we have just discussed..

The radial distribution function in an.ionic soluuon is upmded in a
similar manner.

g(ik) = exp{-—?% [u*(iic);ue,. e ‘31-;-’—]} [1 + .ZN—Z-' f q(ilf; n)d(n)] (15)

n(ik;1) = 6(ik;1) . Qe
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The integrands here, called 7-sums, are defined just like the P-sums in the
ordinary density expansion, except that connexions now are made through
all possible combinationd of w-bonds and isolated k-bonds, that is, with the
exclusion of combinations containing k-bond chains (Fig. 5). We see that

i 2 -
n(ik;Z) = B(ik;2) + N + N + N ‘... >
' Pk
' Fic. § .

the Debye-Hiickel distribution function occupies here a place analogous
to that of the Boltzmann factor in the ordinary density expansion.
The osmotic pressure of ionic solutions is given by

P R > 9 :
= A= g A= D g e an
. =1

a0 = > & | s
22 . -
02) = (3K~ $7(K) (19)

Again, the integrands here, the Q-sums, are defined in the same way as the
R-sums of the ordinary virial expansion of pressure, with connexions made
through all possible combinations of y-bonds and isolated k-bonds (Fig. 6).

R
Qs) = Aw /\ (NO VAN e?c.)

Fo. 6

Here the Debye-Hiickel limiting law for osmotic pressure of ionic solutions
plays a role analogous to that of the osmotic pressure of an ideal solution in
the virial expansion. We might say that theionic solution Qescribed by the
Debye-Hiickel limiting law can be defined as the Debye-Hiickel model, and
the series of our modified cluster integrals describes the deviations of the
actual solution from the Debye-Hiickel model just as the series of the
ordinary cluster integrals describes deviations of the actual solution from the
ideal solution model. This analogy applies also to the potentials of average
force apd distribution functions.. We have on one hand density expansions
of potentials of average force and distribution functions involving direct
pair potentials, Boltzmann factors and Mayer's-f-functiond; equations (4)
through (9), and on the othef hand we have our new expansions, involving
Debye-Hiickel ‘screened potentials radial distribution functions, and the
new y-functions, equations (11) through-(19). Of coufse, OUr new expaisions



