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PREFACE

This book originated in a course given by R. Brout at Cornell
University on the many-body problem. The emphasis was on two
subjects. The first was a detailed introduction to the linked cluster
development of the many-body perturbation theory with parallel
development in classical statistics, quantum adiabatic zero ‘emperature
theory, and finally quantum statistics. The second was a systematic
development of the many-electron problem from the plasma point of
view.

We decided to adhere in great measure to this plan. Thus the .
book is of an intensive rather than extensive character. It was felt of
pedagogical necessity to go into great detail on the formal manipulations
of perturbation theory. This formal theory is then given substance by
detailed application to one problem of importance in physics.

It is with considerable regret that requirements of time and space
have not permitted us to write further on some of the more elegant
developments of many-body theory as well as on the beautiful appli-
cations that have been found in physical problems. We also mention
here that the student will profit considerably by reading in parallel with
the present work the excellent books of Pines and Thouless. These
books are wider in scope than ours and consequently less detailed in
development.

R. Brout acknowledges the financial support of a John Simon
Guggenheim fellowship (1961-62) and an Alfred P. Sloan fellowship
(1959-61). P. Carruthers acknowledges the support of the National
Science Foundation Post-doctoral feillowship during 1960-61.

R. Brour

P. CARRUTHERS
September, 1963




-

CONTENTS

1.

5.

The Many-Body Problem in Classical Statistical Mechanics

The Ursell-Mayer Cluster Expansion
Correlation Functions .
Cluster Expansion for Long-Range Forces

Plasma Oscillations; Random Phase Approximation

The Self-Consistent Field Method ; Vlasov Equation

Field Theoretic Methods; Linked Cluster Expansion

Second Quantization ; the Adiabatic Hypothesns
Perturbation Expansions

Linked Cluster Theorem

Grand Ensemble; Perturbation Theory
Canonical Ensemble; Perturbation Expansion .

Electron Correlation; Quantumn Mechanical Treatment .

31
3.2

General Survey
The Sawada Hamlltoman Method

Dielectric Formulation of the Many-Body Problem

4.1.
4.2.
4.3.
44.
4.5.

Generalized Dielectric Constant
Self-Consistent Field Method .
Graphical Analysis of the Dielectric Constant
Corrections to RPA ; Exchange Effects

RPA in Real Solids .

Applications to the Theory of Metals

Specific Heat, Susceptibility, and Quasi-Particles
Characteristic Energy Loss .
Screening of a Foreign Impurity

Phonons in Metals

Phonon-Mediated Electron Interactlon—Mechamsm of Super-

conductivity
Zero Sound

vii

. -191

16
20
28
34

92
107

- 127

127
138
143
148
151

160

160
173
176
179

189




viii

5.7. Paramagnetic Spin Susceptibility
5.8. Other Applications of RPA .

Author Index

Subject Index

CONTENTS

193
198

201

203

A ]




v

CHAPTER 1

The Many-Body Problem in Classical
Statistical Mechanics

1.1. Ursell-Mayer Cluster Expansion

The prototype of the classical many-body problem is the dilute
non-ideal monatomic gas, whose macroscopic behavior is described by
the Ursell-Mayer expansion. Aside from giving a simpler proof of
this expansion than is usual, our purpose in presenting this theory is
twofold. In the first place, the analysis of this problem exposes in a
familiar context many features common to all many-particle systems.
Secondly, the modification of this analysis required by the long range
of the coulomb force sheds much light on the collective behavior of
many-electron systems.

According to statistical mechanics all thermodynamic quantities
may be calculated from the free energy F. In the classical canonical
ensemble the free energy is given in terms of the pcrtition function Z
according to the relation

—BF=1logZ; f= 1/kT, a-1)

Z= N! h:uv fdp dq exp [—BH(p, 9)]. (1-2)

In these equations T is the absolute temperature, k is Boltzmann’s
constant; # is Planck’s constant. The N-particle system is described
by the Hamiltonian H(p,q) where p stands for the 3N momenta
P1sPas s pN and g for the 3N coordinatesr;, X,, ..., ry. Thus, in Eq.

1-2): dp= H d3p,, dg = H dr;, We suppose further that all

particles have the same mass, m Then for an ideal gas, H = Z p?/2m,

Eq. (1-2) becomes (Z;4. = Zy)
QN

=N’

A= hjQumkT) . (1-3)
1 , ,

e e ————



2 LECTURES ON THE MANY-ELECTRON PROBLEM

Q is the volume of the system, which is assumed to be of macroscopic
dimensions. 1 is the mean thermal deBroglie wavelength.

We are concerned only with the effects of the interactions between
the particles. Since by assumption the potential energy V does not
depend on velocity, the kinetic energy part of Eq. (1-2) can be separated
off, so that the partition function has the form

Z= Zog%v fdr, dry - - drye™®V

= Zy(exp (—BV)). (1-4)

The expectation value, (f(r,, . . . ry)), is defined as the average of
the function f according to the following probability distribution:
The 3N variables 1y, 1y, I, ...,ry are distributed with a uniform
probability density of (1/Q)" inside the box of volume {2, and zero if
any of the r, lie outside the box. The “correlation™ free energy AF,

due solely to the interactions between the particles, then assumes the
simple form

—BAF = —B(F — Fiae) =108 (Z|Z,) = log (exp (—FV)). (1-5)

We further assume that the potential energy V, besides being indepen-
dent of velocity, is a sum of pair interactions v;; = v(r; — 1,), where r,
denotes the position of the ith particle:

V= 3 uvy=4%2v, (1-6)
1<i<s<N i#3
There are N(N — 1)/2 terms in this sum.
We shall often encounter expressions like the right-hand side of
Eq. (1-5). We shall, therefore, recall some results from the theory of
probability, in which similar functions appear. For instance, the
“moment generating function” ¢(7)

8(1) = {exp (1x)) = “go ‘%—) -7

generates all the moments of the random variable x according to any
probability distribution (indicated by the brackets) for which &(#)
exists. In the problem at hand, ¢ is —f = —1/kT, and the random
variable x is ¥ = (1/2) Z v,
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The physical quantity of interest is log ¢ instead of ¢ (see Eq. (1-5)).

By expanding the exponential, and then the logarithm, in a Taylor
series one derives the expansion

log (exp (1x)) = 2 ‘—n"% . (1-8)

The coefficients M, have many simple and useful properties which we
shall exploit frequently. The M, are called “semi-invariants,” or
“cumulants.” It is easily checked that the first few semi-invariants are

M, = (x) (1-9)
M, = (x*) — (x)? (1-10)
My = (x*) — 3xW{x) + 2(x)? - (1-1D)

M= (xt) — 4lx¥)(x) — 3(x®? + 12(x*)(x)? — 6(x)t. (1-12)
The general expression is

T T A T

3 n,.!

}‘:im-n)

The meaning of the restriction is that one sums over all sets of numbers
{n,} satisfying 3 in, = n.

3
The advantage of working with Eq. (1-8) as opposed to Eq. (1-7) is
made clear by considering the two random variables, x and y. Inan
obvious notation:

log (expltx + N)) = 3 = M, (1-8)

a n!
For independent variables x and y, the left-hand side of Eg. (1-8") is also
log (exp (#x))exp (ty)) = log (exp (1x)) + log (exp (¢y)).
Comparison with Eq. (8).then yields the important result:
M =M% + MY, (1-14)

that is, all cross terms involving independent variables vanish in the
semi-invariant expansion.

Evidently, if one has the set of independent variables {x,} then

p .
M 5 e, (1-14)
4




LECTURES ON THE MANY-ELECTRON PROBLEM
As a simple illustration of the cancellation of the cross terms we
work out MZ™¥. From Eq. (1-10), for independent x and y

M = ((x + ) — (x + )
= ((£%) 4+ 20 + PN — (X + Y + 2x))
=& =@+ @H - )7
= M;z) + M(zv). :

We are now prepared to evaluate the free energy. According to
Egs. (1-5) and (1-8) (Brout (1))

o (A"
—BAF =3 (=B M, (1-15)
. =1 n!
In Eq. (1-15) the free energy is given by an expansion in powers of 1/kT..
We will show how this can be converted to a power series in the density.

First let us examine M,, which is just the average of the total
potential energy:

M, = (V) = év f dr, dry - - drN(Zjv”). (1-16)

Obviously, every term in the summation gives the same contribution so

that
N 1
Ml = (2)@ fdl'l A dl'Nv,-,

N\1 '
= (2 )13; fdl'l dl'zv(l’m) (1'16 )
The combinatorial factor (1;]) = ﬂ]\%:_l) is the number of terms in

the sum in Eq. (1-16). We shall always be interested in the limit of
infinite systems; i.e., all expressions are to be evaluated in the limit
N — o, Q — o, but with p = N/Q held fixed at some finite value.
This amounts to ignoring surface effects, and for consistency we
should keep only the leading term in N. Thus, N(N — 1)[2 is replaced
by N?%/2, (]:) by N*/n!

At this point we digress to remark that the convergence of the
various expansions made, although critical to the subject, is only
assumed, not proved. Further, even if these series were proved to
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converge, then one would have to decide whether the limit N — oo
could be taken term by term (as we shall do). This latter procedure is
much more restrictive than is mere convergence, in that it demands
uniform convergence of the series. Apart from the question of conver-
gence of the expansion in § is the problem posed by certain types of
potentials for which the various integrals in the M,’s may be undefined.
Examples of .this behavior are so common (e.g. hard cores, coulomb
potentials) that we cannot ignore this trouble. The usual procedure in
such cases is to work out the problem for a similar potential, for which
all quantities are well defined. The series can often be rearranged in
such a way that no divergences appear when the originally troublesome
potential is recovered in the appropriate limit.

For example, intermolecular potentials generally have a repulsive
core so that the integrals of » and its powers diverge at small distances.
However, the irreducible cluster integrals entering into the Ursell-
Mayer expansion are well defined. At intermediate stages of the
derivation of the cluster expansion one may use potentials with a large
constant finite value for r less than some small value, say r < a.
Similarly, for potentials decreasing less rapidly than 1/r® at large r one
can supply a convergence factor e ~* and search for an arrangement of
terms such that the limit 2 — 0 exists.

In order to evaluate Eq. (1-16") we introduce the coordinate
transformation

r=n—r; R=4#rn+r). (1-17)

This transformation has a Jacobian of unity. Then according to the

preceding discussion the integral over R gives a factor Q, and Eq. (1-16")
becomes

N, Q=
N/Q=p

It will be noted that M, = (V) is an extensive quantity, as is the free
energy AF.
More interesting results are found for M,:

fim (%) =1p f or) dr. (1-18)

My = (V?) — (V) (1-19)
M, =‘<jzk<l(<v.',vk,> — W) (1-20)

The various terms contributing to Eq. (1-20) may be classified according
to the number of subscripts in common.
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(@) No indices in common (“unlinked” terms). A typical term of
this kind is (vgvy). Evidently the variables r;; and ry, may be varied
independently, so that, according to the previous discussion, vy, and vy,
are independent and give no contribution to M,.

(Ora3) = (D12)(Vgy). (1-20%)

Thus every unlinked term, arising from (v;;v,;) will be cancelled by its
counterpart (v,,){v,,) in Eq. (1-20).

(b) One index in common (“‘reducibly-linked” terms). An example
is {vialeg). Itis easily seen that for the problem at hand this term also
factorizes. Thisis because of the homogeneity of the medium: we may
choose r, as origin and integrate overry and r;. But it does not matter
where r, is taken to be since the domain of integration is infinite.

{V1a0g3) = f_% fdfu dregspyavgs = (V13)(Vss) (1-207)

This factorization among the reducible parts for the second order
reducibly-linked cluster can be extended to any order, as long as this
order does not grow with N. Again, factorization implies the vanish-
ing of the reducibly-linked term.

(c) Both pairs of indices in common (“irreducibly-linked” term).
An example is (v,®). In general any term which is neither unlinked
nor reducibly linked is said to be irreducible.

Thus M, is given by the irreducible terms alone.

M, = ‘Z‘ [0,® = (o;,)). (1-21)

Another important point is made evident by comparing the order
of magnitude of the two types of terms remaining in M,.

1 1
(0" = o f"u’ dryy = O(N') s

e s fnf -of3).

Here we have tacitly assumed that the integrals converge. Thus, it is
necessary to include only the leading term in Eq. (1-21). As in M,
there are N(N — 1)/2 identical contributions so that finally one can
write:

lim (%) =}p f o) dr. (1-22)

N, Q~x

e
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It is important to notice that the cancellation of unlinked terms is
essential in order that M,, and hence AF, be an extensive quantity
(i.e. proportional to N, or Q). Consider, for example, 3 (v;,){vy)

i<j k<l

. <2,

where (ij) # (kI). Each (v;) is of order (1/Q). The number of terms
contributing to the sum is proportional to (N2)®. Thus, the entire
contribution of the term under consideration is of order N2, (N/Q = p
is regarded as fixed and finite.) The worst singularity in M,, arising
from (V™) is of order N». This situation already suggests the theorem,

2 I ] 4 1 \/ 3
1 3 2 0
2%
< V12034 > < vigvzs > <v12>
(a) unlinked (b) reducible (c) irreducible

Fig. 1.1, The basic types of contributions to the expectation value (v;;vn) ate classi-
fied according to the number of overlapping indices.

which we will prove below, that all such terms giving rise to spurious
size dependence cancel exactly. This fact actually follows from the
theorem expressed in Eq. (1-14), once it is observed that the v products
entering into unlinked and reducible parts behave as statistically inde-
pendent entities.

Before proceeding, it is convenient to introduce a graphical
convention for the expectation value (v, *** v,,,). We shall not need
to consider products of expectation values, even though these occur in
M, because such products always cancel or are 0(1/N) relative to the
irreducible terms arising from the first term in M,. The graph
corresponding to (vyvy *** v,,) is constructed as follows: for each
particle (subscript on v) draw a vertex (point); then draw a bond (line)
between the pair of suffixes labeling each v. The topological structure
of the resultant geometrical figure depends on how the various particle
labels repeat. If the figure contains two or more pieces not joined by
any bond then the graph is said to be unlinked. 1If the figure can be
separated into two unconnected pieces by cutting at one vertex, the
figure is said to be reducible, or reducibly linked. The remaining graphs
are called irreducible. Figure 1-1 illustrates these concepts for the
graphs arising from (v,vy;) in M,.
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Most of the complexity arising in higher order semi-invariants
already occurs in M,. Therefore, we analyze this term in detail.
My = Z {<Uuuklumn> 3000 (V) + 2<vii><vkl><vmn>} (1-23)

i<i,k
m<n

Consider first those terms in the sum for which the v’s have no labels in
common (Fig. 2:2a). Clearly '

QisVlmn) = OigU) Omn) = Vi) Op) V)

so that by Eq. (1-23) the contribution of terms with no overlapping
indices is identically zero. (Note that the size dependence of these
terms is given by (N2)3/Q2 oc N2) There is one other type of unlinked
graph coming from (v;;0,;0,,,,), Namely that graph in which one pair of
the v’s has at least one index in common, the remaining v having no
index in common with the aforementioned pair (Figs. 2.2b) and 2.2¢).
Example: _(v;0;0,,,} With m,n # i,j, k. For this set of indices
04060 mn) 18 €Qual 0 (003 ) V). For i 5# k(vvg) = W) vy and
the argument is same as above. To see that such terms give no con-
tribution for i = k consider the second term in Eq. (1-23) for a fixed set
of indices obeying the restriction m, n 5 i, j. This same set of numbers
can arise in three ways from (v;;0;,,0,,) depending on which of the three
v's takes on the m, n specified in the second terms. Thus, all unlinked
graphs arising from (v,;03,0,s) are cancelled off by the remaining terms
in M,. The terms in Figs. (1.2b) and 1.2¢) would give contributions to
M, proportional to N2, were it not for the cancellation.

Next, consider the reducible graphs, Fig. 1.2dto 1.2f. Figure 1.2d
is of the type (Vs | 7 k 7% I 3¢ i, and factorizes into (0y){v)Ox)
on passmg to relative coordinates, as in Eq. (1-20"). Similarly,
Fig. 1.2e gives (0,045015) = 0i;)0xs)(vyy), [ 5 i % k 5 1. Thesituation
is then completely analogous to Fig. 1.2a; cancellation is immediate.
The contribution of Fig. 1.2f cancels as did Fig. 1.2c once it is noticed
that (v,,2v,,) = (v;2)(v;). Thus only the irreducible graphs (Figs. 1.2g
and 1.2k) remain in M; These arise from terms having the structure
(0:4%) Or (v;;30,), Tespectively. Those terms beyond the first in M,
that have not been used up to cancel the unlinked and reducible clusters
have precisely the same distribution of indices as have the irreducible
graphs whose expectation values were indicated above. However, they
have at least one more expectation value than the leading term, and are
therefore of order 1/N times the leading term. Thus, in the limit
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N — o only the irreducible clusters arising from the first term give a
finite contribution to M,/N. This fact (true for all orders) explains the
importance of the irreducible clusters, and further indicates why it is
unnecessary to invent a notation for the products of expectation values.

Volume No. of Order of magnitude
Graph dependence terms in sum of contribution
() 1 I I 9—3 N 6 N 3
®) V I -3 NS N2
(c ) I 0 0 -2 N 4 N 2

@ /\/ -3 Nt N
@ O a-2 N3 N

7)) \V Q-3 Nt N

® © o-1 N? N

(h) A Q-3 N* N

Fig. 1.2. All terms arising from (v,.:Uas) in the third order semi-invariant are
classified according to their order of magnitude.

Our discussion of Mj is completed by noticing that there are
NN =D\ .. o .
(—-———-——( 3 )) identical contributions of the type of Fig. 1.2g and

N(N — 1}(N — 2) of the type Fig. 1.2h. Thus -

lim (Mg) =L fv’(r) dr + p""vmvm,u31 dry, dry (1-249)
Noo \ N 2

The important result in our evaluation of M, and M, is that the
unlinked parts drop out (no indices in common) as do the reducible
parts (at least one index in common). We should like to rephrase the
analysis in slightly different language in order to make evident the
generalization to higher order. Whenever unlinked or reducible graphs
arise in a semi-invariant, a factorization takes place analogous to




