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Preface

Of making many bookes there is no

end, and much studie is a weari-

nesse of the flesh.

Ecclessastes XII, 12,

* When I first took an interest in the Geometry of Numbers, I was
struck by the absence of any.book whicll gave the essential skeleton
of the subject as it was known to the experienced workers in the subject.
$ince then the subject has developed, as will be clear from the dates
of the papers cited in the bibliography, but the need for a-book remains.
This is an attempt to fill the gap. It aspires to acquaint the reader with
the main lines of development, so that he may with ease and pleasure
follow up the things which interest him in the periodical literature.
I have attempted to make the account as self-contained as possible.

References are usually given to the more recent papers dealing with
a particular topic, or to those with a good bibliography. They are given
only to enable the reader to amplify the account in the text and are
not intended to give a historical picture. To give anything like a reason-
able account of the history of the subject would have involved much
additional research.

I owe a particular debt of gratitude to Professor L. J. MORDELL,
who first introduced me to the Geometry of Numbers. '

The proof-sheets have been read by Professors K. MAHLER, L.]J.
MorpeLL and C. A. RoGers. It is a pleasure to acknowledge their
valuable help and advice both in detecting errors and obscurities and
" in suggesting improvements. Dr. V.ENNOLA has drawn my attention to
several slips which survived inte- the second proofs.

I should also like to take the opportunity to thank Professor F. K.
ScuamipT and the Springer-Verlag for accepting this book for their
celebrated yellow series and the Spnnger—Verlag for its readiness to
meet my typographical whims.

Cambridge, June, 1959 J. W. S. Cassers
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Notation

An effort has been made to distinguish different types of mathemati-
cal object by the use of different alphabets. It is not necessary to
describe the scheme in full since an acquaintance with it is not pre-
supposed. However the following conventions are made throughout the
book without explicit mention. :

Bold Latin letters (large and small) always denote vectors. The
dimensions is #, unless the contrary is explicitly stated: and the letter »
is not used otherwise, except in one or two places where there can be
no fear of ambiguity. The co-ordinates of a vector are denoted by the
corresponding italic letter with a suffix 1,2, ..., n. If the bold letter
denoting the vector already has a suffix, then that is put after the
co-ordinate suffix. Thus:

a=(a,...,4,)
b, =(b,,...,5,,)
X, = (Xi., .-..,X,',,‘).
The origin is always denoted by 0. The length of @ is
] = (o + -+ 2P,
Sanserif Greek capitals, in particular A, M, N, T, denote lattices.
The notation d(A), 4(F), V(&) for respectively the determinant
of the lattice A and for the lattice-constant and volume of a set &
will be standard, once the corresponding concepts have been introduced.
Chapters are divided into sections with titles. These sections are
subdivided, for convenience, into subsections, which are indicated by a
decimal notation. The numbering of displayed formulae starts afresh
in each subsection. The prologue is just subdivided into sections without

titles, and it was convenient to number the displayed formulae con-
secutively throughout.
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Prologue

P1. We owe to MiNKowsKl the fertile observation that certain
results which can be made almost intuitive by the consideration of
figures in #-dimensional euclidean space have far-reaching consequences

in diverse branches of number theory. For example, he simplified the

theory of units in algebraic number fields and both simplified and
.extended the theory of the approximation of irrational numbers by
rational ones (Diophantine Approximation). This new branch of
number theory, which MiNnkowskK1 christened ‘“The Geometry of Num-
bers”’, has developed into an independent branch of number-theory
which, indeed, has many applications elsewhere but which is well worth
studying for its own sake.

In this prologue we first discuss some of the concepts and results
which will play a leading rtle. The arguments we shall use are some-
times rather different from those in the main body of the text: since

here we wish to make the geometrical situation intuitive in simple cases

without necessarily giving complete proofs, while later we may need to
sacrifice picturesqueness for precision. The proofs in the text are inde-
pendent of this prologue, which may be omitted if desired.

.P2. A fundamental and typical problem in the geometry of numbers
is as follows:

Let f(xy,..., x,) be a real-valued function of the real variables
%, ..., %,.- How small can |f(#,, ..., #,)|] be made by suitable choice
of the integers #,,...,%,? It may well be that one has trivially
f(0, ..., 0) ==0, for éxample when f(x,, ..., x,) is a homogeneous form;
and then one excludes the set of valuea #y=tyg=--- =u,=0." (The
“homogenecus problem’.)

In general one requires estimates which are valid not merely for
individual functions f but for whole clasaes of functions. Thus a typical
result is that if

- f(xy, x) -——-anxf+2a12x1x,+a22x§ (1)

is a positive definite-quadratic form, then there are integers #,, %, not
both 0 such that
floty, us) < (4D[3)2 - . (2)
where
D = a1 85, — ai,

Cassels, Geometry of Numbears 1



2 5 _A Proiogue

is the discriminant of the form. It is trivial that if the result is true
then it is the best possible of its kind, since
W +uug +uzg =1

for all pairs of integers #,, #, not both zero; and here D =

Of course the positive definite binary quadratic forms are a par-
ticularly simple case. The result above was known well before the birth
-of the Geometry of Numbers; and indeed we shall give a proof sub-
stantially independent of the Geometry of Numbers in Chapterll, §3.

But positive definite binary quadratic forms display a number of argu-
tnents in a particularly simple way so we shall continue 6 use them as

examples.

P3. The result just stated could be represented graphxcally An

mequahty of the type

Hxy, x5) § k,
where f(x,, x,) is given by (1) and % is some positive number, represents
the region # bounded by an ellipse in the (x,, x,)-plane. Thus our
result above states that % contains a point (#,, #,), bther than the
origin, with integer coordinates provided that k= (4Df3)}.

A result of this kind but not so precise follows at once frem a
fundamental theorem of Minkowski. The 2-dimensional case of this
states that a region # always contains a point (#,, %) with integral
co-ordinates other than the origin provided that it satisfies the following
three conditions.

(i) # is symmetric about the origin, that is if (x,, x,) is in % then so
is (— x4y, — %a). -

(ii) @ is convex, that is if (x,, x;) and (y,, y,) are two points of &
then the whole line segment

o Mh+ﬂ~bw1%+ﬁ-ﬁ%}'m§l§ﬂ
joining them is also in #.
(iii) & has area greater than 4.
Any ellipse [(x,, ;) < % satisfies (i) and (ii). Since its area is
o kn kn
(@11 Gg3 — ﬂfn)‘ pt’
it also satisfies (iii), provided that km>>4D¥. We thus have a result

similar to (2), except that the constant (£)} is replaced by any number
greater than 4/m.

P4. 1t is useful to consider briefly the basic ideas behind the proof
of MINKOWSKI’S theorem, since in the formal proofs in Chapter 3 they
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may be obscured by the need to obtain powerful theorems which are

as widely applicable as possible. Instead of the region &, MINKOWSKI

works with the region &#=3%® of points (},;, $%,), where (%;, x5) is
in #. Thus & is symmetric about the origin and convex: its area is ¢
that of # and so is greater than 1. More generally, MINKOWSKI considers

. the set of bodles & (4y, ug) similar and similarly sitnated to & but
with centres at the points (x,, %#,) with integer co-ordinates.

We note first that if & and & (u,, u,) overlap then? (s, 4,) is in &,
For let a point of overlap be (&, &,). Since (&,&) is in S (4, 4,y) "
the point (§—u;, §—w;) must
be in &. Hence, by the symmetry
of &, the point (s#,—&,, uy—&,) is
in &. Finally, the mid-point of
(y— &1, 4g— &) and (&, &) is in
& because of convexity, that is
(Gu, duy) is in &, and (w4, u,)
is in A, as required. It is clear
that & (uy, #43) overlaps F(4;, ug)
when and only when % overlaps
,y(“l"—“;: Ug— u;)

To prove MINKOWSKI'S theorem,
it is thus enough to show that when
the % (u,, ;) do not overlap then Fig. 1
the area of each is at most 1. A

" little reflection convinces one that this must be so. A formal proof
is given in Chapter 3. Another argument, which is perhaps more intuitive
is as follows, where we suppose that & is entirely contained in a square

lelgx, lelgx'

Let U be a large integer. There are (2U + 1)® regions % (u,, ;) whose
centres (u,, 4,) satisfy

(0.0

= U, Ju|<sU.
These & (u,, u;) are allﬁ;ntirely contained in the square
[%m|SU+X, |xsU4+X

6f area
4(U + X)3.
Since the & (4, u,) are supposed not to overlap, we have
(2U+1)’VS4(U + X)2,

1 The converse statement is trivially true. If (u, #y) is in @ then (}u,, }u,)
is in both & and & (u,, u,).

1%



4 Prologue

-where V is the area of .%; and so of each ¥ (%, u,). On letting U tend
to infinity we have V=1, as required.

P5. A change in the co-ordinate system in our example of a definite
binary quadratic form f(x,, x,) leads to another point of view. We may
represent f(x;, xg) as the sum of the squares of two linear forms:

: f(xy, %) = X{ + X3, (3)
where

Xy=ax,+fx, Xy=yx+odx ()
and «, #, y, 0 are constants, e.g. by putting
a=a},, B=ajta,,
y =0, =a; DL

Conversely if o, §,y,0 are any
real numbers with «d — By =0 and
X:, X, are given by (4), then

2 % __ 2 2
X1+ Kz—a11x1+2a12 Xy Xg + Qa9 X2,

with @y, =a® + P2,
alzzuéfﬂy, (5)
gy = p* + 8,

is a positive definite quadratic form
with .

D=“na22‘““§2=(°‘6”‘ﬁ7’)2' (0)

We now consider X,, X, as a system of rectangular cartesian co-
ordinates. The points X,, X, corresponding to integers x,, %, in (4) are
then said to form a (2-dimensional) lattice A. In vector notation A is
the set of points : )

(Xy, Xg) =y (o, ) + o, (ﬂ: o), (7)

where u;, u, run through all integer values.

We must now examine the properties of lattices more closely. Since
we consider A merely as a set of points, it can be expressed in terms
of more than one basis. For example

=B y—28, (=B —9

is another basis for A. A fixed basis («, ), (¥, ) for A determines
a subdivision of the plane by two families of equidistant parallel
lines, the first family consisting of those points (X, X,) which can be
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- expressed in the form (7) with u, integral and «, only real, while for
the lines of the second family the réles of #;, and %, are interchanged.
In this way the plane is subdivided into parallelograms whase vertices
are just the points of A. Of course the subdivision into parallelograms
depends on the choice of basis, but we show that the area of each
parallelogram, namely

"o Byl

is independent of the partlcular basis. We can do this by showmg that
the number N(X) of points of A in a large square

: 2(X): X=X, |X,|sX
satisfies
N(X) 1

MK, :
aXT 7 Tad = By (X — o)

Indeed a consideration along the lines of the proof of MINKOWSKI'S
convex body theorem sketched above shows that the number of points
of A in 2(X) is roughly equal to the number of parallelograms contained
in’ 2(X), which again is roughly equal to the area of 2(X) divided by
the area |« d — By| of an individual parallelogram. The strictly positive
number

d(A) =|as— Byl ®)

is called the determinant of A. As we have seen, it is independent of

‘the choice of basis. .

P6. In terms of the new concepts we see that the statement that
there is always an integer solution of f(x,, ;) < (4D/3)! is equivalent
to the statement that every lattice A has a point, other than the origin, in

X+ XI< (D). ©

\

On grounds of homogeneity this is again equivalent to the statement
that the open circular disc

P XI4+ X3 A (10)

contains a point of every lattice A with d(A)<<(2)}, and the fact that
there are forms such that equality is necessary in (2) is equivalent to
the existence of a lattice A, with determinant 4(A,) = (3)! having no
point in Z. So our problem about all definite binary quadratic forms
is equivalent to one about the single reglon 2 and all lattlces Similarly
consideration of the lattices with points in

1 X, X,| <1
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gives us information about the minima of indefinite binary quadratic

forms:
o inf (), ug)|:
%,, 4, integers
. ' not both &
and so on.

These considerations prompt.the following definitions. A lattice A
is said to be admissible for a region (point-set) # in the (X,, X,)-plane
if it contains no point of # other than perhaps the origin, if that is a
point of #. We may say then that A is #-admissible. The lower bound
A (R) of d{N) over all Z-admissible lattices is the lattice-constant of #:
if there are no #-admissible lattices we put 4(R)=oc. Then any
lattice A with d(A) <4(R) certainly contains a point of # other than
the origin. An #-admissible lattice A with d(A) =4 (%) is called critical
(for 2): of course critical lattices need not exist in general.
~ The importance of critical lattices was already recognized by
Mixkowskl. If A, is critical for # and A is obtained from A, by a
slight distortion (i.e. by making small changes in a pair of base-points)
then either A has a point in # other than the origin or d(A)=d(A)
(or both).

As an example, let us again consider the open circular disc
2: X24+Xic<t

Suppose that A, is a critical lattice for 2. We outline a proof that a-
critical lattice, if it exists, must have three pairs of points 4 (4,, 4,),
+(By, By), £(Cy, Cy) on the boundary Xi+X3=1 of 2. For if A,
had no points on X} + X3 =1, we could obtain an 2-admissible lattice
with smaller determinant from A, by shrinking it about the origin, that
- is by considering the lattice A=¢A, of points (¢X,, tX,}, where
(X;, Xg) €N and 0<t<t is fixed. ’l‘hen d(N\) =ed({N\)<d(A,), and
clearly A would be also 2-admissible if ¢ is near enough to 1. Hence A,
contains a pair of points on X? 4- X% =1, which, after a suitable rotation
of the co-ordinate system, we may suppose to be 4-(1, 0). If there were
no further points of A, on X3+ X3=1 then we could obtain a @-
admissible lattice A of smaller determinant by shrinking A, perpendicular
‘to the Xj-axis, that is by, taking A to be the lattice of (X, ¢X,),
(X1, X,) € A,, where ¢ is near enough to 1. Finally, if A, had only two
pairs of points +(1,0), &4 (B;, B,) on the boundary, then it is not
difficult to see that it could be slightly distorted so that (1, 0) remains
fixed but (B,, By) moves a.long X3} + X3 =1 nearer to the X,-axis, cf.
Fig. 3.
This can be verified to decrease the determinant of the lattice
[indeed (1, 0) and (B,, B,) can be shown to be a basis for A,], and for
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small distortions the distorted lattice A will still be 2-admissible.
Hence a critical lattice A, (if it exists) must have three pairs of points
on X%+ X2=1: and it is easy to verify that the only lattice with three
pairs of points on X§ + X3 =1, one of them being (1, 0), is the lattice

N with basis — O
1,0, & V3. o} (8,82

This has the vertices of
a regular hexagon

+(1,0),
(& V8)
(£ V)
on X?+X2=1, but no
points in X}-+X§<<1.
We have thus shown
that (D) =d (') = ()} |
provided that £ has ‘Q b
a critical lattice. Min- Fig. 3
KOWsKI showed ‘that '
critical lattices exist for a fairly wide set of regions # by, roughly speak-
ing, showing that any #-admissible lattice A can be gradually shrunk
and distorted until it becomes critical. In the text we give a more
general proof of the existence of critical lattices using concepts due to
MAaHLER which turn out to have much wider significance.

O149)

~ P7. Another general type of problem is the typical ‘‘inhomogeneous
problem”: Let f(x;, ..., x,) be some real-valued function of the real
variables 1y, ..., x,. It is required to find a constant £ with the following
property: If &, ..., £, are any real numbers there are integers Uy, ..., U,
such that .
[ F &~ g, ..., &, — u,) < k.

. Questions of this sort turn up naturally, for example in the theory
of algebraic numbers. Again there is a simple geonietric picture. For
simplicity let # =2. Let % be the set of points (x,, xy) in the 2-dimen-
sional euclidean plane with

(3, x| = &

Denote by % (u;, uy), where w,, u, are any integers, the region similar
to # but with the displacement w,, u,; that is #(u,, u,) is the set of
points x;, x, such that

[F (% — wy, 23 — ug)| < k.
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Then the inhomogeneous problem is clearly to choose % so that the
regions #(u,, u,) cover the whole plane. In general one will wish to
choose %, and so %, as small as possible so that it still has this covering
property. Here we have a contrast with the treatment of the homo-
geneous problem in § 4, where the objective was to make the regions
[there denoted by .¥ (#, v)] as large as possible but so that they did not.
overlap.

In this book we shall mainly be concerned at flrst with the homo-
geneous problem. Only when we have a fairly complete theory of the
homogeneous problem will we discuss in Chapter XI the inhomogeneous
problem and its relation to the homogeneous one.



Chapterl

Lattices

1.1. Introduction. In this chapter we introduce the most important
concept in the geometry of numbers, that of a lattice, and develop some
of its basic properties. The contents of this chapter, except § 2.4 and
§ 5, are fundamental for almost everything that follows.

In this book we shall be concerned only with lattices over the ring
.of rational integers. A certain amount of work has been done on
lattices over complex quadratic fields, see e.g. MULLENDER (1945a) and
K. ROGERS (1955a).  Many of the concepts should carry over practically
unaltered. Again, work on approximation to complex numbers by °
integers of a complex quadratic field [e.g. MULLENDER (1945 a), CASSELS,
LepERMANN and MAHLER (19512), Portou (1953 a)] and on the minima
of hermitian forms when the variables are integers in a quadratic field
[e.g. OPPENHEIM (19322, 19362, 1953f) and K. RoGERS (1956a)] may
be regarded as a generalization of the geometry of numbers to lattices
over complex quadratic fields. We shall not have occasion to mention
lattices over complex quadratic fields again in this book; we mention
them here only for completeness. For lattices over general algebraic
number fields see ROGERS and SWINNERTON-DYER (1958a).

1.2, Bases and sublattices. Let @, ..., @, be linearly independent
real vectors in n-dimensional real euclidean space, so that the only set of
numbers ¢, ..., ¢, for which tia,+ .- +t,@,=0 is §,=1t,=---=¢,=0.
The set of all points T —wa, e +ua, )
with integral u,, ..., u, is called the lattice with basis @,, ..., a,. We
note that, since @,, ..., @, are linearly independent, the expression of
any vector @ in the shape (1) with real u,, ..., #, is unique. Hence if @
isin A and (1) is any expression for & withreal %,, ..., %,, thenu,, ..., u, .
" are integers, We shall make use of these remarks frequently, often
without explicit reference.

The basis is not uniquely determined by the lattice. For let a; be

the points ' {7
p a;=2vj;a (1=4,j=n), 2)
)

where v;; are any integers with

det(v;;) = +1. 3)
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Then :
aQ; = Z Wi a; (4)
!

with integral w,,. It follows easily that the set of points (1) is precisely
the set of points
iy ud,

where #;, ..., u, run through all integers; thatisa,, ..., a,and a,, ..., a,
are bases of the same lattice. We show now that every basis a; of a
lattice A may be obtained from a given basis @, in this way. For since"
a; belongs to the lattice with basis @, ..., @, there are integers v;; such
that (2) holds: and since @; belongs to the lattice with basis a;, ..., a,,
there are integers w,; such that (4) holds. On substituting (2) in (4)
and making use of the linear independence of the a;; we have

5 1 it e=1
ki {0 otherwise.
Hence
' det (w;;) det (v;;) =1

and so each of the integers det(w,;) and det(v;,) must be +1; that is
(3) holds as required.

We denote lattices by capital sanserif Greek letters, and in particular
by AAM,N,T. ' ’ '

If @,...;@, and a;, ..., a, are bases of the same lattice, so that
they are related by (2) and (3), then we have

det(ay, ..., a,) =det(v;) det(ay, ..., a,) = +det(ay,...,a,),

where, for example, det(a,, ..., a,) denotes the determinant of the
n X n array whose j-th row is the vector a@,. Hence

Cd(A) =|det(a,,...,a,)]
is independent of the particular choice of basis for A. Because of the
linear independence of @, ..., @, we have
d{N\)> 0.

We call d(A\) the determinant of A.
An example of a lattice is the set A, of all vectors with integral
coordinates. A basis for A, is clearly the set of vectors
5 —1 zeros »—f geros! :
e s, e : .
e,.=(0,...,0,1,0,...,0). (I=s7sn);
and so ’

d(Ng) =1.



