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PREFACE

THis book was begun during the War, about fourteen years ago. My first
book on crystals had appeared during the First World War, under the
title Dynamik der Kristallgitier (Teubner, 1915). A few years later I was
invited by Sommerfeld to write an article on the subject for the Mathe-
matical Encyclopaedia. This appeared in volume v, p. 527, under the
title ‘Atomtheorie des festen Zustandes’ and was published as a
separate book (Teubner, 1923). This was two years before the discovery
of quantum mechanics. A report on the situation up to the year 1933
has been published as an article in the Handbuch der Physik by Maria
Goppert-Mayer and myself. There are several other articles in this
Handbuch by K. F. Herzfeld, R. de W. Kronig, A. Smekal, H. G. Grimm,
and H. Wolff, dealing with problems of lattice dynamics. Meanwhile
several books on crystal theory have been published which take proper
account of quantum mechanics. The most comprehensive is that by
F. Seitz, A Modern Theory of Solids (McGraw-Hill, N.Y. and London,
1940) ; other books, for example that by N. F. Mott and R. W. Gurney,
Electronic Processes tn Ionic Crystals (Clarendon Press, Oxford, 1940),
deal only with restricted sets of problems. Some special subjects, like
the theory of specific heat, infra-red absorption, and Raman effect, have
become standard chapters in general textbooks. A great number of
single investigations have been published since my article in the
Encyclopaedia.

The situation seemed to demand an attempt at a new, comprehensive
presentation. But the subject has become much too large to be dealt
with from all aspects. The contributions of my own school during the
last few years have been mainly concerned with non-conducting
materials. It seemed to be desirable to give a description of the
methods and results in this field.

My plan was to start from the most general principles of quantum
theory and to derive in a deductive way the structures and properties
of crystals, as far as one could proceed.

I wrote a series of sections which now correspond to the backbone
of the Chapters IV to VII of the present book. But with the end of the
war my time was so occupied with other matters that I could not
continue to write this book. It remained in my desk for several years
until Dr. K. Huang, at that time an I.C.I. Fellow at Liverpool, came to
work with me for the holidays. I gave him this manuscript and he
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was interested in the matter. He wrote several interesting papers on
crystal theory, and I suggested that he should finish the book. |

He accepted this and has succeeded in his task. However, the book
has become rather different from my original plans. Dr. Huang, who
is convinced that science’s main purpose is its social usefulness, found
my plan of an abstract, deductive presentation not to his taste. There4
fore, he has written some introductory chapters of a more elementary
character which should be easy to understand, and which lead slowlj
up to the general theory of the second half of the book. He has also
rewritten my original text, generalizing it in many ways, and adding
new sections. :

Thus the final form and the wording of this book are essentially due
to Dr. Huang. I have discussed the text with him and sometimes
suggested alterations. He had to depart before it was quite finished
and has sent me the remaining sections from China. I have checked
the whole text and added a number of pages, footnotes, and some ap-|
pendixes. The latter refer mainly to the historical aspect of the theory.i;

Huang has often referred to newer events which he has witnessed, while
I, being of an older generation, remember older developments. I have:
tried to amend this. But anyone interested in the sources should turn

to my older books.

The book is not entirely a compilation of published results. The

approach to the thermodynamics of lattices was sketched by me and
worked out in considerable detail by Huang. His main contribution
to this section is the extension of the theory of elasticity of lattices
to finite strains. I think that the formulae given here, which represent
the temperature-dependence of all parameters describing elastic, pyro-

electric and piezoelectric properties of dielectrics, have never been given |
before. The formulae look rather long and complicated, but are really
simple if one takes the trouble to study them. We have not discussed
them in detail, and leave this to those who wish to apply them to special |
cases. Other sections which are entirely due to Huang are the pheno-
menological treatment of dispersion in the first part, and also its detailed
atomistic treatment in the second part of the book, the quan-
tum theory of width of the infra-red lines, and many other minor

matters.

It may not be superfluous to mention some branches of crystal ;

dynamics which are not in this book. There is first the theory of metals,

which is a science by itself represented in several well-known textbooks '
(N. F. Mott and H. Jones, The Theory of the Properties of Metals and
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Alloys, Oxford, Clarendon Press, 1936; A. H. Wilson, The Theory of
Metals, Cambridge University Press, 2nd ed., 1953).

Then there is the wide field known under the name of ‘Order-Disorder
Theories’, including the theory of alloys and of ferromagnetism. Here
the lattice is regarded as a rigid frame ; the problem consists in finding
the statistical equilibrium distribution of particles, or of properties of
particles, over the fixed lattice points. This has nothing to do with the
dynamics of the lattice itself, and there are several accounts in the
recent literature (F. C. Nix and W. Shockley, Rev. Mod. Phys. 10, 1
(1938); J. H. Wannier, Rev. Mod. Phys. 17, 50 (1945); L. D. Taschick
and H. M. Jones, Phys. Rev. 91, 1131 (1953) ; particularly dealing with
ferromagnetism: P. R. Weiss, Phys. Rev. 74, 1493 (1948)).

Other subjects omitted from the book are the theories of scattering of
X-rays, electrons, and neutrons by crystal lattices. A great part of the
extended literature on these subjects is concerned with the purely
geometrical problem of determining lattice structures. But there are
deep and important investigations on the propagation of rays of different
kinds through crystal lattices which take account of the dynamical
processes involved. They are all elaborations of the original work by
P. P. Ewald on the dynamics of X-ray scattering. There exist fairly
recent reports on scattering of X-rays and of electrons in two books
by Max von Laue (Rdntgenstrahleninterferenzen, Akad. Verlags-Ges.,
Becker u. Erler, Leipzig, 1941; Materiewellen und thre Interferenzen,
Akad. Verlags-Ges., Leipzig, 2nd ed., 1949). These books also contain
sections on the interaction of lattice vibrations and the scattered par-
ticles. We have omitted these theories from our book only with regret,
as they provide the most striking empirical evidence for the dynamics
of lattice vibrations as treated here. But there are comprehensive
accounts of these matters which made a repetition appear superfluous.
(In the Reports on Progress of Physics are the following articles:
K. Lonsdale (X-rays, experimental), 9, 252 (1942); M. Born (X-rays,
theoretical), 9, 294 (1942); G. E. Bacon and K. Lonsdale (neutrons), 16,
1 (1953). Further: R. D. Lowde (neutrons), Proc. Roy. Soc. A, 221
(1954).)

I have to say a word about the notation. It is essentially the same
as that developed in my first book and consecutive papers, but adapted
to British printing usage. Our main concern was economy with letters.
The experimentalists dealing with crystal structures use three letters
h, k, I for the Miller indices of lattice points: what a waste! If one were
to follow this procedure, each letter would have to be used with many
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different meanings. Even with the greatest care, we could not com-
pletely avoid this. But we hope that we have succeeded in never using
the same letter with two different meanings in any one formula. We
have chosen the letters x, £ for indicating points in real space, and ¥, ¢
for points in reciprocal space. The relation between these spaces is
expressed in terms of affine geometry, as is customary in general
relativity. The three coordinates are always numbered 1, 2, 3 and
indicated by small Greek letters used as subscripts.

The reason for my writing and signing this preface alone is not only
the spatial separation from my collaborator, but my wish to make it
clear that the book would never have been finished without his devoted
and efficient labours. He has informed me that he is going to produce
a Chinese edition.

I have to thank my former collaborator, Dr. Bhatia, for helping me
in revising and checking the text and reading the proofs. Dr. J. M.
Ziman, Oxford, and Dr. D. J. Hooton, Edinburgh, have given their
assistancein the final corrections and proof-reading, and Dr. Hooton has
produced the alphabetical index.

1 am much indebted to Sir Ernest Oppenheimer and the firm Indus-
trial Distributors, London, for financial help which made the production
of this book possible.

The Clarendon Press, Oxford, has obliged me very much by following

all my suggestions in preparing and printing the book.
M. B.



ACKNOWLEDGEMENTS

THE authors are grateful to the following for permission to use figures :

Professor E. A. Guggenheim for a figure from Fowler and Guggenheim, Statistical
Thermodynamics (C.U.P.), Fig. 4.

Zeitschrift fur Physik (Springer-Verlag), Figs. 1, 2, 3, 21.

Proceedings of the Royal Society, A, Figs. 8, 12, 18 b, 26.

Philosophical Transactions of the Royal Society, A, Figs. 10, 11, 15, 18, 17, 27,

Nature (Macmillan), Fig. 18 a.

Physical Review, Figs. 13, 14.

Proceedings of the Cambridge Philosophical Society, Figs. 24, 25.

Annalen der Physik (J. A. Barth), Fig. 5.



CONTENTS
PART 1: ELEMENTARY THEORIES

I. ATOMIC FORCES
1. Theoretical Considerations

2.
3.

Tonic Radii . .
Heuristic Expressions for Lattice Energies

II. LATTICE VIBRATIONS

4.
5.
. Frequency Spectrum of Lattice Vlbra.t,xons and Spe(nﬁc Heats
. Long Lattice Vibrations in the Optical Branches

51 &

i

10.

Simple Approximate Treatment of Thermodynamical Behaviour
Vibrations of a Diatomic Chain .

Infra-red Dispersion and the Retardation Effect on La,ttlce
Vibrations

. Atomic Theory of Long Optlca] anra.tlons and Infra- red DIS-

persion . .
Experimental Aspect of Infra,-red Dispersion by Ionic Cr) stals

III. ELASTICITY AND STABILITY

11.
12.
13.

Homogeneous Deformation and the Elastic Constants
Mechanical Stability of Simple Lattices .
Relative Stability and Polymorphism .

PART 1II: GENERAL THEORIES

IV. QUANTUM MECHANICAL FOUNDATION

14,
15.
16.
17.
18.
19.
20.
21.

Quantum Mechanics of Molecular Systems

Normal Coordinates . .

Statistical Mechanics of Systems of Oscillators .

Statistical Mechanics of a Molecular System under External Forces

Static Polarizability and Polarizability in Variable Fields

The Rayleigh and Raman Scattering of Light

Placzek’s Approximation .

Expansion of the Optical Parameters and the Cla.ss1ﬁcat10n of
Optical Effects

V. THE METHOD OF LONG WAVES

22.
23.
24.
25.

26.
217,
28.

The Geometry of Perfect Lattices

The Infinite Lattice Model and General Invammce Relatlons

Lattice Waves . . . . .

Failure of the Method of Homogeneous Deformation and the
Method of Long Waves

Long Acoustic Vibrations . .

The Elastic Constants for Non-ionic Crystals . .

Equilibrium Conditions (vanishing stresses) and Further In-
variance Relations

15
19

38
55
61
82

89

100
116

129
140
154

166
173
178
181
189
199
204

208

213
217
223

225
229
236

240



xii

29.
30.

31.
32.
33.

34.
35.

CONTENTS

Central Forces

Coulomb Field in a Dlpole Lattxce—Ewald s Method and Separa-
tion of the Macroscopic Field . . .

Acoustic Vibrations in Ionic Lattices (rigid ion model)

The Elastic and Piezoelectric Constants and the Dielectric Tensor

Phenomenological Discussion of the Dispersion Formula for

Complex Lattices
Long Optical Vibrations in Iomc Lattices (l‘lgld ion model)
Polarizable Ions . . .

VI. THE FREE ENERGY

36.
37.
38.
39.

40.
41.
42,
43.

The Specification of Finite Strains .

Phenomenological Discussion of the Free Energy of a Lattice

Normal Coordinates of a Lattice . .

Normalization of Physical Parameters, Selection Rules and
Expansion Methods

The Normalized Hamiltonian

The Free Energy .

The Static (Non-vibrating) La.ttnce

The T*-law

VII. THE OPTICAL EFFECTS

44.
45.
46.
47.
48.
49.
50.

II.
I1T1.
1v.

V. L
VIiI.
IX.

The Microscopic Theory of Dispersion

The Local Treatment of Optical Effects . .

The Effect of the Anharmonic Potential on Dispersion

The Dispersion Formula with Damping .

The Effect of the Second-order Electric Moment

The First- and Second-order Raman Effects

The Brillouin Components of the Thermal Scattering of Lnght

APPENDIXES

. Some Common Lattice Structures (p. 1) .

Madelung’s Energy (p. 3) .

Evaluation of Simple Lattice Sums (p. 23)

The Approximation to the Vibrational Spectrum with the help of
the Cyclic Boundary Condition (p. 45)

. Energy Density in Ionic Crystals (p. 83) .
. The Inner Field in Uniformly Polarized Crystals with Tetrahedral

Symmetry (the Lorentz Field) (p. 104)
The Adiabatic Approximation (p. 170)
Elimination of the Electronic Motion (p. 172)
Double Refraction and Optical Rotation (p. 333)

. Recent Publications . .

INDEX . . . . . .

245

248
255
262

265
270
272

278
282
293

302
306
312
319
322

328
339
341
355
363
367
373

382
385
388

391
396

398
402
408
408
411

415



PART 1
ELEMENTARY THEORIES

I
ATOMIC FORCES

1. Theoretical considerations

CRrYSTALLINE solids are distinguished from other states of matter by a
periodic arrangement of the atoms; such a structure is called a crystal
lattice. A precise description of the geometry of a lattice will be given
later in § 22 of Chapter V. Essentially the regularity displayed by a
crystal lattice is that of a three-dimensional mesh which divides space
into identical parallelepipeds. Imagine a number of identical atoms
placed at the intersections of such a mesh; then we have what is known
as a simple lattice (or Bravais lattice). The interstitial parallelepipeds,
which have atoms for corners, are referred to as the elementary lattice cells;
in a simple lattice there is thus exactly one atom to each elementary cell.
Now if the atoms are replaced by similarly oriented molecules, the result
is a general lattice structure; clearly every cell contains as many atoms
as there are in one molecule. The term molecule here describes the
geometrical dispositions of the atoms and need not signify a real molecule
(a group of atoms form a real molecule in a lattice only if they are more
tightly bound to one another than to other atoms in the lattice).

In Appendix I, the familiar structure of the NaCl lattice is ilustra-
ted together with some other common lattice types. We note that
despite the obvious cubic symmetry of the NaCl structure, the elemen-
tary cells have to be chosen as rhombohedra. The vectors a,, a,, a,
shown in the figure are known as the basic vectors, which form the edges
of the elementary cells. The sites of the Nat ions taken by themselves
form a simple lattice; the NaCl structure is, on the other hand, a general
lattice, since we can pair every Na+t ion with one of its six neighbouring
Cl- and designate the pair a ‘molecule’ (of course no real molecules exist
in this case, as every ion in the lattice is similarly related to all its six
neighbours).

According to the underlying atomic forces, crystalline solids are
roughly classified into the following four principal types:

(1) Ionic crystals,

(2) van der Waals crystals,
8595.87



2 ATOMIC FORCES I§1

(3) Valency crystals,

(4) Metals.

A fundamental feature distinguishes types (1) and (2) from types
(3) and (4). The distinction depends on the units with which the crystals
are built. In a general way, one can describe the units as being saturated
in the two former types, and unsaturated in the two latter. An atom
(or ion) with all its electrons in closed shells (rare gas configurations)
or a chemically saturated molecule is typical of a saturated unit; on the
other hand, an atom that can readily form covalent bonds is an un-
saturated unit. Speaking more physically, the electronic wave functions
of unsaturated units, when brought together, are liable to be drastically
altered, whereas the wave functions of saturated units are not so signifi-
cantly affected. This difference can be traced to the fact that, in the
unsaturated units, either the lowest electronic state is degenerate, or
there are energy levels close to the ground state; both cases provide scope
for electronic rearrangements under slight perturbations. The treatment
of the crystals formed of saturated units is simpler; one can calculate the
energy of interaction approximately by the quantum-mechanical per-
turbation theory. One important consequence is that the interaction can
be considered as essentially operating between pairs, and the total energy
in the lattice is the sum of the interactions between the units taken by
pairs (two-body interaction). In fact, it is mainly in connexion with
these crystals, namely, the ionic and van der Waals crystals, that the
elementary theories are useful.

Ionic crystals. For example let us consider the alkali halides, which
are the real crystals closest to the theoretical model for ionic crystals, and
let us imagine building up their ionic lattices. The alkali atoms: Na, K,
Rb, Cs (Li is not considered owing to the complications caused by its
small sizet) have one valence electron outside the complete shells; the
halogen atoms: F, Cl, Br, I, on the other hand, just lack one electron to
complete the outermost shell. From the atoms we form the free ions by
transferring the odd valency electrons from the alkali atoms to the
halogen atoms. The free ions have the stable rare gas configurations;
the sequences, Na+, K+, Rb*, Cs+ and F-, Cl-, Br-, I- have the struc-
tures of the rare gas atoms, Ne, A, Kr, Xe. The extra stability achieved
in the electronic configuration by forming the free ions from the atoms
is not sufficient to offset the rise in electrostatic energy involved in
separating the valence electrons from the alkali jons; this is clear from
a comparison of the first ionization potentials of the alkali atoms with

+ Cf. L. Pauling, The Nature of the Chemical Bond (2nd ed., Cornell, 1948), pp. 351-63.
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the electron affinities of the halogen atoms given in Table 1. The electro-
static energy is, however, largely compensated when we next bring the
ions together to form the lattice. Let us imagine the ions to be brought
together in the following manner. We think of the ions as being initially
arrayed in accordance with the desired lattice structure, but so far apart
that their interaction is negligible. The ions are then brought together
uniformly so that the same lattice structure is maintained throughout.

TABLE 1

Na K Rb Cs

Ionization potential in eV. 512 | 4-32 | 4-16 | 3-87

F C1 Br I
Electron affinityf in eV. 415 | 372 | 3-50 | 3-14

t See Tables 11 and 12.

We can crudely consider an ion as having a radius, beyond which the
electron density is negligible. Then before the ions interpenetrate they
interact like point charges 4-e. The electrostatic energy of a lattice of
point charges cannot in general be calculated in an elementary way; the
difficulty is due to the slow decrease of the Coulomb interaction with
distance (long range force) which makes a direct summation procedure
impossible. A general method of calculating this energy and a simpler
method applicable to structures of high symmetry are described in
Appendix II. Here it suffices to point out that the energy is inversely
proportional to the linear dimensions of the lattice. Thus the energy
per cell can be written quite generally for any ionic lattice in the alterna-

tive forms o o
—(ze)2—r—= -—(ze)zg, (1.1)

where ze is the smallest ionic charge in the lattice, and r, d are respectively
the nearest ion-ion distance in the lattice and the lattice constant, either
of which gives a measure of the lattice dimensions. o' (or «”"), which is
a pure number known as Madelung’s constant, depends only on the
lattice structure and was first calculated by Madelungt with reference
to real crystal lattices. A table of values for o’ (and «”) for some common
lattice types is quoted in Appendix II. Briefly, we shall refer to the above
energy as Madelung’s energy; it is the electrostatic energy between the
ions in a lattice if they are considered as point charges.

t E. Madelung, Phys. Zeit. 19, 524 (1918).
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Madelung’s energy decreases algebraically with decreasing lattice
constant and tends to contract the lattice. Its effect on the lattice can
thus be described as attractive. The attraction is unopposed until the
neighbouring ions begin to interpenetrate, when other forces arise. Let
us consider the effect of an overlap between ions. As we have explained,
owing to the particular stability of saturated units, perturbation methods
for energy calculation can be used. To a first approximation, the energy
isgiven by the average value of the Hamiltonian calculated with the wave
functions of the free ions (unperturbed wave functions). An exhaustive
treatment of various properties of some alkali halide lattices has been
given by Lowdint on this basis. However, we shall follow a cruder
method, based on the Thomas-Fermi-Dirac statistical method, due to
Lenz, Gombés, and particularly Jensen;{ with this simpler method, it is
easier to see the various factors which contribute to the resultant force.

In the statistical method, an electron density function p(x) replaces
the wave function; once the density function is known, the corresponding
energy can be calculated. For two overlapping ions, Lenz and Jensen
simply superpose the density functions of the free ions; in other words,
the ions are assumed to be undeformed. This is the parallel to the wave
mechanical first-order perturbation method, which does not allow for
the effects of the distortions in the wave functions. In the Thomas-
Fermi-Dirac method,§ the following three energy terms are considered:

(i) The classical Coulomb energy of the average charge distribution,
namely, —ep(x) plus the nuclear charges.

(ii) The zero-point kinetic energy of the electrons as required by the
exclusion principle, according to which a volume 42 in phase space
can accommodate no more than two electrons, k being Planck’s
constant, so that states of higher momenta will be involved with
an increase in electron density p. The average kinetic energy turns
out to be proportional to p%3 and the kinetic energy per unit volume
is given by 38R (1\} ,

20m (;) P

where m is the mass of the electron.

(1.2)

+ P.Lowdin, A Theoretical Investigation into some Properties of Ionic Crystals (Uppsala,
1948). Similar calculations for NaCl were first carried out by R. Landshoff, Zeit. f. Phys.
102, 201 (1936); Phys. Rev. 52, 246 (1937).

t W. Lenz, Zeit. f. Phys. 77, 713 (1932) ; P. Gombaés, ibid. 121, 523 (1943); H. Jensen,
ibid. 77, 722 (1932); ibid. 101, 141; 101, 164 (1936).

§ See also P. Gombés, Theorie und Lésungsmethoden des Mehrteilchenproblems der
Wellenmechanik (Birkhauser, Basel, 1950) ; for general description and other references
see Gombas’s book.
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(iii) The exchange energy, which is essentially a correction to (i). The
Coulomb energy calculated classically is inaccurate in two ways.
First, with the electrons represented as continuous clouds, (i) in-
cludes also the self-interaction of the charge cloud of an electron
with itself. Secondly, the proper quantum-mechanical anti-
symmetric wave function takes care of the fact that two electrons
with parallel spins avoid close encounters; (i) takes no account of
thiseffect. These effects can be taken into account by the addition
of Dirac’s exchange term:

$e2 (1\%
_ 34‘3(;1;)“,,;- (1.3)
per unit volume, where ¢ is the charge of the electron.

(Gombést has further approximately corrected for the fact that electrons

of opposed spins also avoid close encounters owing to their Coulomb

repulsion. This correlational effect is roughly equivalent to raising the
exchange term by a fraction. For our illustrative purpose, we shall con-
sider the Thomas—Fermi-Dirac method without this further elaboration.)

The electron density function in the statistical method is determined
by the condition that the corresponding energy is a minimum. Jenseni
has calculated the density functions for all the alkali and halogen free
ions. Using these density functions, we can readily calculate the total

energies of the alkali halide lattices on the basis of the energy terms (i),

(i), and (iii), if the distortions of the ions are ignored. Before the ions

overlap, obviously the energies (i) and (iii) remain the same as for free

ions, but the Coulomb energy (i) now includes the additional Coulomb
energy between the ions. The latter is exactly the Madelung energy,
which we have already discussed. When two ions overlap, we have to
consider the following:
(a) Correction to the Madelung term so as to represent correctly the
Coulomb energy (i). The term is attractive so long as neither
‘nucleus has penetrated the other ion, for the electron cloud of
either ion which has penetrated the other ion is now more strongly
attracted to the other nucleus.
(b) Correction to the zero-point energy. Let p,, p, respectively denote
at any point in the overlap region the original densities of the free
ions. The zero-point energy corresponding to the superposed den-

gity is given by 38h2 [1\% .
40m(rr) (pr+p2)3,

t+ Loc. cit., 1943. 1 Loc. cit., 1936.




