

 SOFTWARE
. QUALITY

Concepts and Plans

" Robert H. Dunn

Systems for Quality Software
Management Consultants

PRENTICE HALL
Englewood Cliffs, N.J. 07632

)

vii

Preface

Supposedly, Haydn got the idea for the opening theme of one of his quartets from the
singing of a lovesick lark. We have all heard that a falling apple inspired Newton’s work
on gravitation. As viewed by either producers or consumers, a few software successes
have happened without anyone giving much thought to quality. All of which demonstrate
that serendipity does work every now and again.

This book is written for those who cannot depend on accident. but need a deliberate
path to software quality. To this end, the book deals with planning the measures one
can take in the interests of software quality. Part V., in fact, is given to formal software
quality plans, Parts I through 1V deal with basic concepts that should lie beneath quality
plans, not least of which is the business of defining what we mean by software quality.
(Section 1.5 of the first chapter amplifies this skimpy outline.)

Let us identify the people who demand constructive approaches to software. Cer-
tainly, software managers, but also programmers who aspire to management. Another
group of people consists of the ever-increasing number of systems engineers and man-
agers attacking—or attacked by—software-intensive projects. An obvious audience for
the book is made up of quaiity control (or quality assurance) managers involved with
software-intensive systems or concerned about the quality of the software their companies
dépend on. We need to include oné more category, the one that lies at the intersection
of quality assurance and software engineering: software quality engineers.

These are the people the book addressess (Well. also, my mother-in-law, because
she loyally reads everything I write.) Despite the diversity of the intended audience,
I have tried to accommodate all its parts. The one prerequisite is some exposure to

viii

Preface

development or maintenance projects: Terms such as “defect” and “manageable” first
appear pages or chapters before their meaning is clarified within the context of software
quality.

Admittedly, readers who are not software professionals may find some of the going
difficult, especially in Chapter 4, which discusses various software technology issues with
respect to the influence of technology on quality or project control. Still, such readers
need not give up: The summaries at the end of each chapter provide enough background
to permit the reader to skip ahead to more familiar ground.

I should like to thank John Musa, Amrit Goel, and the anonymous reviewers
rounded up by Prentice Hall, from whom I received a great many useful suggestions. 1
should also like to thank my perennial first reader, Steve Dunn, for his usual meticulous
criticism of the manuscript.

ROBERT H. DUNN
Buck Hill Road
Easton, Connecticut

Contents

_ Preface, vii
PART 1. INTRODUCTION

1. The View from Above, 1

I.1 The Size of the Software Probiem, 2
1.2 Perceptions of Software Quality, 4
1.3 Elements of Quality, 9

1.4 Software Quality Assurance, 11

1.5 From Microscopy to Plans, 13

1.6 Summary, 14

1.7 References, 15

2. The View from Below, 16

2.1 Fucets of Quality, 16
2.2 Quantifying Software Characteristics, 25
2.3 Quality Measurements, 29
2.4 Reliability Modeling, 35
2.5 Summary. 40
2.6) References, 41

fit

PART 2. QUALITY ESSENTIALS

3. Craftsmen, Artists, and Engineers, 44

3.1
3.2
33
34

The Programming Professional. 45
Education and Training. 48
Summary, 53

References, 53

4. Technology, 55

4.1
42
43
44
45
4.6

Paradigms and Languages, 56
Reusability, 67

Software Development Environments, 72
Defect Removal, 79

Summary, 90

References, 92

5. Management, 94

5.1
5.2
53
5.4
55
56

Defined Processes, 94
Commitment to Quality, 95
Project Planning, 97
Adherence to Plans, 101
Summary, 102

References, 102

PART 3. QUALITY CONSTRUCTION

6. Process Models, 103

6.1
6.2
6.3
6.4
6.5
6.6

The Waterfall Model, 104
Demonstration-Driven Variants, 111
Alternative Models, 113
Concluding Observations, 115
Summary, 116

References, 116

7. Praoject Control, 118

7.1
7.2
7.3
74
7.5
v 7.6

From Here to There, 119
Symptomatic Analysis, 123
Help from the Organization, 134
Help from Outside, 136
Summary, 139

References, 139

e e -

v 8.

Contents

‘Softw,are Is Fore\?er, 141

8.1
8.2
83
84

8.5.

8.6

Evolution, 142
Maintenance Problems, 144
Maintenance Solut;ons, 148
Requalification, 152
Summary, 153

References, 154

PART 4. QUALITY MANAGEMENT

9.

10.

Software Quality Assurance, 155

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8

Software Quality Assurance Organizations, 155%
The Peacekeeper, 159

The Surrogate, 161

The Collector, 162

The Analyst, 165

The Planner, 173

Summary, 173

References, 174

Quality Improvement, 176

10.1
10.2
10.3
104
10.5
10.6

The Industrial Model, 177

Analysis, 178

Revising the Process, 189

Improving the Product. 193
Summary. 195

References. 196

PART 5. QUALITY PLANNING

11.

12.

Planning the Management of Software Quality, 198

11.1
1.2
i3
1.4
1.5
1.6

What and Why, 198

Relations to Other Documents, 199
Specific Topics Requiring Planning, 200
Sample Software Quality Plans, 209
Summary. 210

Refererices. 211

Plan for a Small Project, 212

12.1
12.2

The Project. 213
The Development Plan. 214

12.3 The Quality Plan. 216

vi 13. Plan Fo.unwing an Industrial Model, 223

Contents 13.1 The Project, 223 .
13.2 The Development and V&V Plans, 225
13.3 The Quality Plan, 230

13.4 References, 252

-

14. Plan Following a Military Model, 254

14.1 The Project, 255

14.2 The Development Plan, 258
14.3 The Quality Plan, 267

14.4 References, 279

APPENDICES

A-1. Library Control Audits, 280

A-2. Audits of Final User Documentation, 283

A-3. Analysis of Module Fault Incidence, 285

A-4. Defect Severity Levels, 286

A-5. Form 8-7890, Software Problem/Change Report, 287

A-6. Glossary of Acronyms and Abbreviations for
Chapters 13 and 14, 289

Index, 291

CHAPTER 1

The View from Above

Gather a group of computer scientists or software engineers and ask them to discuss-any
issues that they care to. Start a stopwatch. In the interval between 7 minutes 30 seconds
and 9 minutes 15 scconds (my contribution to the science of software metrics)—after
such topics as professional sports, new “automobile models, and expectations of intercst
rate movements have been disposed of—the subject will invariably tum to programmer
productivity and sofiware quality.

Gather a group from the ranks of senior management concerned with the develop-
ment or maintenance of software, and it will take considerably less time to get around
to the issues of productivity and quality. They who pay the bills, have to confront dis-
gruntled customers or boards of directors, or have to assume the ultimate risks, tend to
get to the bottom line with little delay.

Their risk can be considerable. My last six months as a salaried employee were
spent on a project that bumed corporate funds at the ratc «f about $100 million a year
in an attempt to adupt a software-intensive line of telecommunications equipment to
new markets. The problems faced by the several hundred engineers and programme:s
were diverse, but nearly all were related to the software of the system. I was only one
of many who were convinced that the project was in such disarray that there was no
practical way of completing it without spending at least another $250 million, and then
only by scrapping much of the work accomplished and starting anew. It takes a while
for the conclusions of senior technical management to percolate to the level of senior

2

Chapter 1:
The View
from Above

1.1

corporate management, but to the surprise of few the project was finally (and properly)
terminated. The writeoff was reckoned in the hundreds of millions.

The essential precept of this book is that the issues attending the quality of software
are those that lie at the heart of risk, cost, and schedule containment. Oh yes, and these
issues have also to do with producing software that people are pleased with. After all,.
people ought to get something for their millions.

THE SIZE OF THE SOFTWARE PROBLEM

Millions? Try billions, about $40 billion for the United Siates alone. The cost of data
processing has been quadrupling every ten years or so. Initially, hardware represented
most of the cost, but few of us are old enoigh to remember those days. The cost
of computer hardware performance has been decreasing by orders of magnitude each
decade, sowing the field for ever larger, ever more ambitious software projects, To take
a small-scale example, at one time I had a personal computer fumished with 256K of
internal memory and two floppy disk drives, each capable of handling 360 kilobytes of
data. For little more than this system had cost 18 months earlier, I replaced it with a
new desktop with 640 kilobytes of internal memory and a processing speed roughly four
times as fast. Also, instead of two floppy drives, the new system had one floppy and a 20
megabyte hard disk. Within two years, [had added a math coprocessor to increase speed
and graphics to use newly available software. More telling, I was spending unproductive
time at the tasks of conserving both RAM and disk space.

As cheaper hardware creates an insatiable demand for more software, we become
more aware of the cost of that software—as software productivity has not in the least
kept pace with hardware cost/performance ratios. Indeed, despite the introduction of
structured programming, structured design, design tools, modern programiming languages,
and all the other shibboleths by which software engineers recognize each other, the most
optimistic rate at which programmer productivity is increasing is about 5% per year.
Five percent is scarcely enough. Quoting an eminent computer scientist, “A conservative
estimate indicates a tenfold increase in the demand for software each decade.”' Looking
at the most voracious consumer of software development effort, the DoD, it is estimated
that software costs will account for 10% of the defense budget by 1990.*

Cost is not the only concern. Where will all the programmers who are going
to generate the new software come from? In the United States, we now have a half
million or so, depending on the labor classifications one wants to include under the word
“programiner.” Without closing the gap between supply and demand, the number of
people entering the software business is monotonically increasing. As reported in the
New York Times March 23, 1986, basic data of the U.S. Department of Labor forecasts
that the number of computer programmers will, by 1995, increase by 72% to a total of
586,000. During the same interval, the category the department calls “computer-analysts,
data processors” is forecast to increase by 69% to a total of 520,000. Should we be
looking forward to the day when computers consume the entire work force? Surely,
even by the year 2020, we shall continue to need workers to grow food, build houses,
and play Beethoven quartets. From every point of view, programmer productivity is a
burning issue. . '

* Attributed to the Electronics Industry Association in a DoD bricﬁné on the Strategy for a DoD. Software
Initiative (STARS).

3

Section 1.1:
The Size of
the Software
Problem

Even as we have leamned to look to Japan for workable approaches to improving
the quality of our products, it is instructive to compare U.S. programming productivity
with that of Japan. Although no two studies of productivity of either the United States or
Japan arrive at the same numbers, all seem to find Japan far ahead of the United States.
One citation suggests the average Japanese programmer produces 2,000 lines of code per
month, while his or her American counterpart is generating fewer than 300.2 1 suspect
that part of the reason for this discrepancy is that the average Japanese programmer is
engaged in less complex projects than the average American programmer, but a more
significant explanation for the difference probably lies with the greater use of software
tools by the Japanese, and with the active participation of Japanese quality engineers.

Apart from the costs attending the development of new software, we are starting to
lose sleep over the conceptual size of the projects now being considered. Where a large
software system once numbered 100,000 lines of code, new systems are breaking the
one million mark. With the power offered by modemn chip technology, we can conceive
of applications heretofore undreamed of. With the possible exception of science fiction
writers, would anyone two decades ago have thought of the graphical computer-aided
design systems that are used to generate complete VLSI (very large scale integration)
chip designs? Would anyone have thought of connecting hundreds of such chips, once
designed, into a distributed computing system capable of steering data and voice messages
through various communications protocols across any path served by any combination of
wire, fibre-optics, or satellite? Would anyone have conceived of real-time video picture
enhancement capable of detecting and automatically pinpointing features of interest?

With these marvels—marvels even to those in the business of software—we en-
counter disquietingly complex conceptual structures wrought of our own cognitive pro-
cesses. We have seen greater complexity before: the ecology of a farm pond, the structure
and dynamics of a galaxy, our own bodies. But it is dne thing to study that which exists,
which has been designed or has evolved or has simply happened before we got there,
and quite another thing to invent a structure of a complexity so great that it befuddles
its own inventors. In a much-remarked paper,> David Parnas has questioned thie very
feasibility of the software that would be required to implement the Strategic Defense
Initiative (Star Wars), and in the process has raised doubts among computer scientists
and software engineers everywhere about how much we know about managing software
projects that dare to extend the current bounds of complexity.

Awareness of .the size of the software problem is reaching the highest levels of
industry and government. In an attempt to improve the technology with which software
complexity is managed, we now have in the United States three new enlerpnses directed
squarely at the software technology problem:

¢ Microelectronics and Computer Technology Corporation, a consortium of 20 American
suppliers of computer hardware and software. (MCC also addresses human interfaces
and hardware.)

¢ Software Productivity Consortium, a cooperative effort of 15 defense electronics and
aerospace contractors.

e Software Engineering Institute, an outgrowth of the DoD’s ambitious project named
Software Technology for Adaptable and Reliable Systems (STARS). The Institute is
also affiliated with Camnegie-Mellon Institute.

4

Chapter 1:
The View
from Above

-

The United States has no monopoly on software research and technology transfer.
Abroad, three initiatives have attracted considerable note:

e Japan’s Sofiware Technology Center, with government, university, and industry par-
ticipation.

e European Strategic Program for Research and Development in Information Technology
(Esprit), formed by the European Economic Community, with tasks farmed out to
companies in member countries.

® Alvey, an independent software initiative of the United Kingdom, which is also heavily
involved in Esprit.

The funding of these ventures is continually undergoing revision, so it is not possi-
ble to state accurately the cost of these multinational and multicompany efforts. However,
the total cost will certainly exceed two billion doitars by 1990—all this in the interests
of attaining new levels of software complexity.

Most of the time, of course, we work within established limits of complexity. We
do so, however, with programming teams smaller and perhaps less expert than those
that will be required to implement the Strategic Defense Initiative, teams for whom the
project at hand represents challenge enough. It seems that nearly every programming
project taxes the imagination of its staff and provides new opportunities for error, error
in understanding exactly what it is that is needed, error in translating the requirements
into design, error in managing the entire process. As computers continue to proliferate
and increase in power even as they decrease in space and cost, we find new applications
for them that at once expand our capacities for performance and create new headaches
for management.

Viewed from afar, software management is the management of complexity. Any
number of approaches have been invented1o ameliorate the task of managing complexity.
Of these, perhaps the least difficult to implement is the concept of the quality program.
Throughout the pages of this book we see how quality programs become part of the
software solution. However, the notion of a quality program raises a problem of its own:
If we are to use quality as a mechanism for reducing the pain of software management,
we need to understand just what we mean by “quality” as ii applies to software.

1.2 PERCEPTIONS OF BOFTWARE QUALITY

The connotation of “quality” seems to depend on the context in which it is used. One
speaks-of automobile quality in terms of the tolerance permitted in the:fit of body panels,
as measured in hundredths of inches. -Using a different sense of guality, we also say that
a car upholstered in real leather has greater quality than one furnished with vinyl seats (as
measured in units of class). So too, with software. Analogous to automobile upholstery,
a relational data base system has greater quality than a8 “flat” data base system.. It gives
the owner (or user) more ulility, greater convenienee, oF; perhaps,. just a sense of well-
being. With regard to the fit of body panels, software may not develop squeaks with the

passage of time, but as it ages it.can become difficult to.modify. Both nonons of quality

fall within J. M. Juran’s concept-of guality: fitness for use. .
Restricted to software products, fitness for use is certainly inclusive. By why re-
strict quality to products? If, in our view of quality, we can also include the process that

5
Section 1.2:
Perceptions

of Software
Quality

results in products that are fit for use, we can also address the problems of managing
complexity. That is, to join in the attack on the fundamental software problems now
facing us, software quality programs should also encompass the suitability of program-
ming processes to the formidable tasks of producing complex software. In short, we can
identify two sets of objectives for software quality programs:

¢ Software products.
e Software processes.

" As we shall see, the distinction between the two sets is more apparent than real.
Indeed, actions taken to satisfy one are required to fully satisfy the other.

Quality of the Software Product

Let us return to the business of defining quality, the issues of leather vs. vinyl on the
one hand and manufacturing tolerances on the other. Just how do we perceive the fitness
for use of the software product? Our perception of fitness depends on how we use it.
Let us take a software-intensive central office telephone switch as an example.

“The subscriber percéives the product’s fitness in terms of reliability and availability.
When the phone goes off hook, the subscriber expects to hear a dial tone, if not by the
time the instrument is placed against his or her ear, then no more than a second or two
later, Once having dialed, the subscriber expects to be connected to the called terminal.
The only exceptions permitted are busy signals and announcements that the number is
no longer a working number (or one of the many other discrete announcements with
which telephone companies remind us of how fumble-fingered we are). If the subscriber
forwards calls from office to club, he or she expects that no potential customers will be
lost if the afternoon is given over to tennis. Call forwarding, like all subscriber features,
must work unerringly as advertised. In brief, telephone subscribers define telephone
switch quality as service dependability.

Quite different is the view of the people operating the central office. They, 100,
regard dependability as paramount, but they see it in different ways. To provide the
subscriber with new service features, the operational staff must be able to install these
features (update the software) without interrupting service. Thus, they want their dialogue
with the switch to be clear and unambiguoys. There must be no references to data files
normally hidden from their view. If the installers forget which step of the installation
process they are-in, they expect to find out by querying the system. If they enter plainly
inappropriate data (e.g., a trunk label where a file name was required), they expect to
be admonished. Central office technicians want software that will limit the likelihood
and magnitude of human error, whether the fask at hand is extending service, trouble-
shooting a hardware problem, or going about such routine maintenance tasks as data
backup operations.

The bookkeeping staff of the telephone company is also a user of the switch
software. Although the staff anticipates its own fallibility from time to time in forgetting
to redress a posting error, it will not accept sofiware failures that charge calls to the
wrong party. The bookkeeping staff perceives the quality of the switch in terms of the
number of billing complaints received from subscribers.

Taking one more class of user, we have the maintenance programmers. Among
the attributes of quality to which they are attuned, we find accurate and understandable

6

Chapter 1:
The View
from Above

software documentation, readable and well-annotated source code. and a software struc-
ture that does not violate the specifications of the software tools at hand. For example.
if a patch is necessary. the patch installation tools must be capable of ensuring that the
correct locations of memory and none others are overwritten.

We could go on with others who are touched by the quality of switch software.
but the point is made: Many factors enter into the quality of large software products.

Quality of the Process

The most straightforward perception of a “quality” programming process has to do with
the result of the process: The process is of high quality if the resulting product is
perceived to be of high quality. Quality products are necessary to the definition of a
quality process, but insufficient. Ahhough good product quality can dependably result
only from a good process, other vnews of quality need to be entertained, especially if
quality programs are to be funded. Apan from the incontrovertible connection between
process and product, the success of a software project is measured not only in terms of
the product but of the evénts that attended its development. If the project manager had
1o give up every second weekend to replan the project as a result of a succession of
mishaps that affected schedules. or if the project manager’s boss had to.dig deep into the
firm's pockets.to pay for cost overruns, or if the programmers had to spend most of their
time drearily writing documentation (which will read drearily) instead of designing, we
can hardly say that the process is of high quality.

To digress briefly, we may note that many firms have looked to the manager (or
director) of quality assurance (or quality control or product assurance or what have you)
to “take care of software quality matters. " Where this has happened we can suspect

/that senior management does not know much about software quality. Moreover, we can

almost bet that. unless they have taken pains to school themselves in systems or.software
methodology, managers of quality assurance, with their background of viewing quality
in terms of the product or service delivered to customers. will decide that the quality .
department should get involved in software testing. Although more thorough testing can
be expected to benefit product quality, it is only part of a bigger solution to product
problems, and it misses altogether the broader scope of software quality.

Good products are only one of management’s objectives. The other objectives are
meeting schedule, meeting cost, ‘and manageability. A quality process addresses all of the
objectives. General managers perceive process quality (although they may not know its

‘name) by the extent of customer satisfaction or increased sales or some similar objective

measure, and by increased profit—the result of loweg costs. The knowledgeable software
manager perceives quality in the smoothness of the development or maintenance process:
infrequent replanning exercises, awareness of schedule slippages in time to take remedial
action, no embarrassing interviews with senior management to obtain more funds, and
confidence that critical parts.of the system have been identified and are competently
bemg dealt with.

Indirectly, managemem s ability to cohabitate with software is affected by the view
of the process held by the people of the process. Designers who have to wait their tumn
to get to the word processor to document their work become nolicéably (sometimes
clamorously) impatient. Programmers who are unsure of exactly what it is they are

~ supposed to program go about their work dispiritedly. Equally cheerless are testers who

find that faults in the test support software cause system crashes several times a day.

7

Section 1.2
Perceptions
of Software

* Quality

What do these disgruntled workers do? They do what software people have been doing
ever since computers were invented: They leave to take jobs elsewhere. Now, given
the romantic allure of the life of the gypsy, migratory programmers will leave sooner or
later in any case, but the problems of management are exacerbated when sooner, rather
than later, is the rule. Worst of all, the more gifted software personnel, who are often
the most stable, arc the first to refuse to put up with unproductive process crotchets. In
short, the programming staff’s view of the quality of the software process is everyone’s
business.

The. problem with processes is that they are seldom designed. They happen or,
more euphemistically, they evolve. A banking house starts off with a small programming
staff, possibly contract programmers working under the direction of a salaried supervisor,
to build a modest management information system (MIS) for the timely reporting of the
finn’s equity and debt positions. A process appropriate to the small scale of the problem
is more or less.defined, as often as not by ad hoc procedures transmitted verbally. Other
than language processors, tools are few. A decade later, when the firm is attempting to
network an integrated set of MIS packages to its branch offices, the process by which
the new software will be generated is the original process, repeatedly patched, with each
modification a quick fix in reaction to the shortcomings observed in the course of the
immediately preceding project.

To take another typical example, an instrument manufacturer uses a microprocessor
in a new equipment design. The programmers are the engineers who thought to incor-
porate computing power as a way of providing unique features or of reducing hardware
elsewhere. Working under engineering disciplines (not the worst thing they could do),
they get the chip programmed, although with more effort than had been anticipated. Al-
though the programming turned out to be a learning process, the product is successful.
Some years later, the manufacturer is using a dozen microprocessors in its equipments
(now graduated to “systems”) and the programmers are dealing with concurrency, on-
line downloading of reactive software into microprocessors, and other software matters
standing at a considerable remove from engineering affairs. Indeed, in recent years the
company has hired professional programmers with no engineering training, but the soft-
ware development process has remained tied to what was appropriate to the design of
electronic equipment.

The conscious design of software development and maintenance processes is one
of the pillars supporting the fairly new discipline of software engineering. In fact, the
term “software engineering” was originally coined by Prof. F. L. Bauer of the Munich
Technical University in contradistinction to the prevalent practice of “sofiware tinker-
ing.”* “Software engineering” seems to have a cachet about it that has induced any
number of managers, either out of ignorance or wishful thinking, to call their program-
mers software engineers, quite independently of the approach to programming. In any
case, the establishment of softwaré processes based on thoughtful methodologies and
supported by modemn technology is the hallmark of successful programming shops. The
six projects cited in Section 1.1, three in the United States and three abroad start with
the precepts of software engineering as a given.

To see how appalling software tinkering can be, consider two examples of mis-
management | have personally encountered. The first is from the engineering-cum-
programming shop of an ‘nstrument manufacturer. The target computer was a ruggedized

*In 1967 a1 a meeting of a study group on computer science established by the NATO Science Committee

Chl'pte-r 1

The View
from Above

minicomputer destined for an airborne application. To the surprise of the programming
manager, the machine came unbundled, and the cost of software—an assembler (yes,
the program was to be written in assembly language), linker. and loader—had to be
negotiated separately. The programming manager, outraged that the cost of the software
would be $10,000, found a much cheaper cross-assembler and linker-loader that could
be hosted by a machine located in a service bureau in a nearby city. However, in
order to use the cross-assembler, some preprocessing of the source code was required.
The preprocessing would be done on the firm’s general purpose computer. This is the
software testing scenario that finally developed: Source code was entered into the local
computer, a tape was output, the tape was delivered to the service bureau, and a day
later a load tape for the target machine was delivered so that a test could be run. Total
turnaround time was three to four days, depending on the time of day the first tape was
produced. Not including lost labor time, the total cost of developing test load tapes
during the months before the project—hopelessly behind schedule—was abandoned was
ten times that of the scomed $10.000.

The second example of an impossible process concerns a major financial institution
that hired droves of programmiers to develop an electronic funds transfer (EFT) system.
Previously, it had contracted for custom software or for the modification of off-the-shelf
systems. The EFT system represented the firm’s initial venture into in-house software
developmemt. The programmers were immediately sét to work desngmng and coding, and
in short order the director of information systems (or whatever his title was) was able to
report hundreds of new lines of code generated each week. Not long before testing was
to start it become apparent that the programmers had never been given a clear idea of
what the EFT system was supposed to accomplish. Subsystems were defined in general
terms, and it was in those general terms that the new staff happily set itself to the task of
programming. However, there were no testable specifications for the subsystems and of
course there was no system specification. As it happened, some of the code was salvaged
by the new director of information systems—it is likely that more was salvageable if on®
only knew what it did—and the system was finally completed at a cost overrun of about
300% of the initial estimate.

In both of these examples, the programmers were aware of the impending disasters
long before senior management. However, business organizational hierarchies being what
they are, there was no way to tip off the top brass that unpleasant surprises were in the ~
offing. Moreover. as is so often the case, senior management had only the vaguest notion
of what software development was all about, and were not inclined to ask questions likely
to yield recondite answers. (Even today, when all else fails. programming managers turn
to obfuscation.) In the absence of a standard process founded on proven principles—
even if proven elsewhere—management had no way to interpret preject status reports and
no way to demand remedial action (which in both cases included firing the responsible
manager) while such action could still prevent disaster..”

In stark contrast to these two examples of processes of abysmal quahty we can also
find established processes based on the tenets of software engineering, as documented in
countless journal articles and reports, conferences, workshops. symposia, and books. In
the better programming shops, the processes continue to evolve, not to correct last year's
disaster, but (often with quantified knowledge of the effects of the current process) to
take advantage of the latest technology. These quality processes exist not by chance but
as the result of a deliberate quality program.

1 3. ELEMENTS OFQUAL!TY K

No matter how it is percexved itis hard to find anyone who has not a good word to say
for quality. We're all for it. The only question is how do we get it? Simply paying more
is not the answer. We have paid plenty and failed to get quality. -Indeed; overpaying for -

isoftware is &' sympnom of poof process quality. No, money is not the source of software

' quality; although we shall sée where it helps. In fact, there are not one, but three sources

of software quality:

o People. v,
o Technology.
e Management.

The canvas painted by people, technology, and management does not leave out
much. Still, given the universal pursuit of simple solutions to difficuit problems. the
breadth of the foundation of software quality is worth noting, even at the risk of banality.

- Centainly, to say that people are a prerequisite for quality is to drop a bromide
square in the middle of the floor. Nevertheless, quality requires qualified personnel, and
personnel qualifications for software development include smarts, aptitude, education,
training, and attitude. Each of these can be addressed by a quality program, although
within fairly narrow limits for the first two. Section 1.1 spoke of the burgeoning size
of the software work force, which does nothing for one’s confidence in being able to
recruit at some selected level of intelligence or aptitude. Finding the right educational
background is also compromised in a sellers’ market, but through tuition reimbursement
and adjusted working hours, conipanies can take aggressive remedial action. Certainly,
training and encouragemeént of positive attitudes lend themselves to management actions.

.. Apaft from infliencing theé quality of the cognitive processes that produce soft-
ware, we have also to deal with the problem of mainaining staff stabi!ity If firms_ -

*efnploymg proglamimers have o mm10poly on losing people at de worst possible tines . - .
~ or losing ’peopk th whom considérable education and fraining have beei' mvested a

new chapter in the annals of professional migration lis nevertheless been' Written by the

‘programting pepulation. In some conipanies, annual turnover rates of 25% are consid- .

ered notmal. Understandably, staff stability is a coneew; of quality pmgrams, and, as

it hilppéns, Mpmvint smnlity ls often a cmiéotnm of mpmvements m management
and wchnology

- Of ¢torse,’ me interest in mmogy Mscends the inﬁuence it has on dismdA

ing people from lehving for ‘ifiore automated pustures. Qaality derives- dircotly from . |

i tools, deféct removal techitiques, the ease with which previously qualified sbftware can-
"be teused, the choié® of programiming laniguages, afid the very choice oF development

9

methodologies. Nori¢ of these factors is independent of the others, which requires soft-

* ware managers to have a working kiiowledge of thie entire software engineering spectrum.
“ The difficulty s ‘compounded by the rate at which the technology is improving, that is, -

the rate at which programming is becoming s6ftware enginéering. Looking about the
world of programming, we see levels of technilogy (and corresponding quality) dating
fromh 1970, from 1980, and from the mid-1980s.' The remarkable thing is that we can see
all technology epochs in‘the same firm. Many programming shops lend new meaning
to the term “living history.” For example, we might have part of the MIS department

