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PREFACE

This book is a systematic exposition of the fundamental concepts and gen-
eral principles underlying programming languages in current use. It may be
used as a text for courses in computing science and software engineering
programs, and as a reference by advanced programmers, programming
theorists, and programming language implementers, describers and design-
ers. Linguists and logicians may also be interested to see how the methods of
mathematical logic may be applied to formal languages that are much more
complex than the traditional logical calculi.

The material and the presentation have been strongly influenced by the
approach to programming language theory founded by Dana Scott and the
late Christopher Strachey at Oxford University, particularly the first chapter
of A Theory of Programming Language Semantics by Robert Milne and
Strachey (Chapman and Hall, London, and Wiley, New York). But I have
emphasized intuitive concepts, rather than formalism and mathematical
theory. I hope that this will help to make their work accessible to a wider
audience. :

Readers are expected to have enough programming experience to
appreciate the basic ideas of programming methodology (importance of
program correctness, readability and modularity, as well as efficiency; sep-
aration of levels of abstraction; stepwise refinement), and to have a reading
knowledge of PASCAL, which is used as a standard example throughout.
There are also “case studies” of interesting aspects of several other lan-
guages used in practice, but no attempt is made to give complete descriptions
of languages, or to discuss experimental languages. The emphasis is on
significant differences and similarities between linguistic concepts. The only
mathematical prerequisite is a basic knowledge of sets and functions.

Undergraduates with adequate programming experience and
mathematical maturity can cover all the material in the order presented in
two terms. For students with weaker backgrounds, the “starred” sections
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Xiv PREFACE

(on the principles underlying Scott’s theory of computation) may be
omitted. It is also possible to use the final chapter as the outline of an
introductory graduate course in formal description of programming lan-
guages, referring to material in earlier chapters as needed.

. There are exercises, project suggestions and an annotated bibliography
at the end of almost every chapter. An additional bibliography of suggested
readings on each of the programming languages mentioned in the text is
given in an appendix.

I amvery grateful to everyone who gave me suggestions and comments
on various drafts, particularly Michael Gordon, Robert Milne, Tony Hoare,
David Barnard, Mike Jenkins, Molly Higginson, David Leeson, Bill O’Far-
rell, John Gauch and Bruce Stratton. The remaining errors, obscurities and
prejudices are my responsibility. I would also like to thank Michael Levison
for his help in preparing the manuscript with his IVI text-editing system and
the Natural Sciences and Engineering Research Council of Canada for
financial assistance.

R.D. T
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1 INTRODUCTION

1.1 PROGRAMMING LANGUAGES

A programming language is a system of notation for describing computa-
tions. A useful programming language must therefore be suited both for
describing (i.e., for human writers and readers of programs), and for compu-
tation (i.e., for efficient implementation on computers). But human beings
and computers are so different that it is difficult to find notational devices
that are well suited to the capabilities of both. Languages that favor humans
arc termed high-level, and those oriented to machines low-level.

Let us consider some extreme examples of programming languages. In
principle, the most “powerful”” language for any computer is its machine
language, which provides direct access to all of the resources of that compu-
ter. However, programs in such a language cannot conveniently be
implemented on other computers. Furthermore, it is very difficult to write or
read machine-language programs. Human beings cannot cope with the
complete lack of structure in both programs (sequences of machine instruc-
tions) and data representations (sequences of machine words).

It might be thought that “natural’” languages (such as English and
French) would be at the other extreme. But, in most fields of science and
technology, the formalized symbolic notations of mathematics and logic
have proved to be indispensable for precise formulation of concepts and
principles and for effective reasoning. However, in their full generality the
notational devices of mathematics are not even implementable on com-
puters, for deep reasons that will be discussed later.

There is a language called LAMBDA (invented by D. Scott) that has
many of the properties of conventional mathematical notations and is as
expressive as possible: all and only the operations that apparently are
possible to compute are definable in LAMBDA. These properties make it
useful as a specification language a.d in theoretical studies of computability.

5506325



2 . INTRODUCTION

But LAMBDA is so far removed from conventional computers that, though
implementable in principle, it would not be practical as a programming
language.

In short, an ideal programming language would combine the advan-
tages of machine languages and mathematical notations, but achieving this
aim has proved to be a very difficult problem. Many existing languages have
only managed to combine countless “features” into a jumble that is neither
easy to implement nor a pleasure to use.

There are so many programming lancuages and most are so complex
and irregular that it would be nearly impossible and certainly pointless to
learn every feature of every existing programming language (or even of the
dozen or so more important ones). Fortunately, there is a great deal of
conceptual overlap between programming languages, even those that on the
surface appear to be quite dissimilar. Almost every practical programming
language has mechanisms for dynamically updating storage, introducing
symbolic names, transferring control, structuring data, defining procedures,
and so on. In every language, these mechanisms are governed by the same
general principles. ‘

Itis on these fundamental concepts and general principles that this book
concentrates. Understanding them will make it easier to use, describe,
compare, implement, and design programming languages.

It will be convenient to use a single programming language as a standard
example in this book. PASCAL has been chosen because it is widely known
and has been one of the most successful at reconciling conflicting design
criteria (though it is certainly not the final step in the evolution of program-
ming languages!) The reader is assumed to have a reading knowledge of
PASCAL as well as experience in programming with some high-level lan-
guage. Jensen and Wirth (1974) or a comparable description shouid be
available for reference. Minor variants or extensions of PASCAL will be
described and discussed when convenient or necessary to illustrate a point.
Several case studies of other well-known languages will provide a broader
perspective. Appendix A is a bibliography of suggested readings for each of
the programming languages discussed. It should be noted that many of the
program fragments used as examples are intended only to illustrate language
concepts and do not necessarily exemplify good programming style.

1.2 SYNTAX, SEMANTICS AND PRAGMATICS

It is traditional when dealing with languages of all sorts to try to separate
concerns with form, the subject of syntax*, from concerns with meaning, the

*Important technical terms are introduced in bold italic face.




SYNTAX, SEMANTICS AND PRAGMATICS ’ 3

field of semantics. Consider the simple “language” of binary numerals. Some
examples of binary numerals are

0

1

101

0101
10011010 °

A communication in this language evidently consists of a finite
sequence of characters ‘0’ and ‘1°. This is just syntax however, and says
nothing about what such a communication is intended to mean.

The usual interpretation for such numerals is that each numeral denotes
a natural number (i.e., zero or one of its successors). For example, ‘101’ and
‘0101’ both denote the number five, the fifth successor of zero. Numbers are
“abstract” mathematical concepts, whereas the digit strings that appear on
paper are numerals, that is to say, symbolic representations or descriptions
of numbers. Many other languages have this same set of numbers as their
meanings: decimal numerals, Roman numerals, and so on.

In general, then, syntax is concerned with only the format, well-
formedness, and compositional structure of communications in a language,
and semantics with their meaning.

The pragmatics of languages have to do with their origins, uses, and
effects. So, the pragmatic aspects of programming languages include lan-
guage implementation techniques, programming methodology, and the his-
tory of programming-language development. In this book, important prag-
matic considerations will be pointed out wherever appropriate, but systema-
tic expositions of programming methodology, language impleme:. tatlon
and history are outside its scope.

The criterion for correctness of a language processor is that it imple-
ment the syntax and semantics of the language. However, because of prag-
matic factors, processors often do not meet their specifications for all pos-
sible programs and data. For example, suppose that the language of binary
numerals were to be ‘‘implemented” by representing nurabers in a storage
register of fixed size. It is evidently impossible for every numeral in the
language to be correctly implemented as specified.

If a processor is unable to mect its specifications for some input, it
should signal this with an appropriate warning message. Otherwise, it is
termed insecure. Output from an insecure processor must be treated with
suspicion unless it can be verified that the program has not breached any of
the insecurities.

An important goal of programming language design is to make it easier



4 INTRODUCTION

for implementers to eliminate insecurities without incurring severe penalties
in execution time or storage space. Unfortunately, with most current com-
puter designs, some kinds of programming error cannot be detected
economically, so that the goal of eliminating insecurities should also be
taken up by computer designers.

1.3 SYNTAX-DIRECTED SEMANTICS

Programmers are encouraged to program in a “structured’” way, that is to
say, to use the syntactic structures of their programming language to help
them systematically develop and more clearly express the semantic structure
of their algorithms. Similarly, languages are best described by basing
specifications of their semantics on an appropriate syntactic description.
Programming languages are so complex that a structured approach is almost
essential for conceptual understanding,.

As a simple example of syntax-directed semantic description, consider
again the language of binary numerals. The syntax of this language may be
precisely specified as follows:

(a) Characters ‘0’ and ‘1’ are binary numerals.

(b) IfNisabinary numeral, then N with a ‘0’ ora ‘1’ appended to the right
of it is also a binary numeral.

(¢) These are the only binary numerals.

Rule (a) describes the two elementary (i.c., nondecomposable) syntactic
forms. Rule (b) describes the two composite forms; in this rule, the binary
numeral N referred to is an example of what is termed an immediate con-
stituent (of a composite syntactic form). Rule (c) specifies that the set of
binary numerals is to be the smallest set meeting requirements (a) and (b).

Note that this syntactic description specifies not only the criteria for
well-formedness of a binary numeral, but also its phrase structure, that is to
say, how it is analyzed into immediate constituents, and these into their

Fig. 1.1



SYNTAX-DIRECTED SEMANTICS 5

immediate constituents, and so orn, unti} elementary forms are reached. For
example, the phrase structure of binary numeral ‘0101° may be depicted by
the tree shown in Fig. 1.1, The process of determining the phrase structure of
text is known as parsing.

A specification of the meaning of (i.e., the number denoted by) every
binary numeral may now be based on the abovc syntactic description as
follows:

(a) Binary numerals ‘0’ and ‘1’ denote numbers zero and one, respect-
ively.

(b) Ii N is a binary numeral that denotes number n, then (i) N with ‘0’
appended to the right of it denotes number 2xn, and (ii) N with ‘1’

! appended to the right of it denotes number 2Xn+1.

For example, consider numeral ‘0101°. Working from the leftmost char-
acter, :

‘0> denotes zero, using rule (a);
hence, ‘01’  denotes 2x0+1=1, using rule (b), part (ii);
hence, ‘010’ denotes 2% 1=2, using rule (b), part (i);
hence, ‘0101’ denotes 2X2+1=35, using rule (b), part (ii).

Each non-terminal node of the phrase structure tree for ‘0101" may be
“labelled” with the semantic object denoted by the corresponding phrase
(Fig. 1.2). Thus semantics chases denotation up the syntax tree (with
apologies to W. V. Quine).

"Fig. 1.2

The above description of the syntax and semantics of binary numerals is
an example of what is known as the denotational approach to language
description. The general idea is simply to specity the meanings of (i.e., the
semantic objects denoted by) elementary forms directly, and the meanings
of composites in terms of the meanings of their immediate constituents. This
“structured” approach has a long history in logic and linguistics. Subsequent
chapters will explair how programming languages may be described denota-
tionally. -
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1.1 Suggest two ‘‘unusual’’ semantic interpretations for binary num-
erals.

1.2 Suppose that rule (b) of the definition of the syntax of binary numerals were
changed to
(b) K N isa binary numeral, then N prefixed by 2 ‘0’ or a ‘1’ is also a binary
numeral.
Define the usual semantics of binary numerals using this syntactic descrip-
tion.

1.3 Describe the syntax and usual semantics of binary numerals with fractions,
such as ‘101.0101°.

*1.4- Prove that, according to the syntax and semantics given, every finite binary
numeral has a unique meaning, using mathematical induction on the length
of the numerals.

*Solutions to starred exercises require a higher level of mathematical maturity.

PROJECT

Write an essay on the history of one of the major programming languagos,

BIBLIOGRAPHIC NOTES

There is a large literature on programming language design. Three papers by Hoare
[1.6, 1.7, 1.9] are especially recommended. The language LAMBDA was described
by Scott [1.15].

The trichotomy between syntax, semantics, and pragmatics was pro-
posed by Morris [1.12, 1.13] and Camap [1.2]. The history of programming lan-
guages is discussed in papers by Knuth and Pardo[1.10] and Hoare [1.8),in a book by
Sammet [1.14), and in a conference proceedings[1.18]. There are large literatures on
programming methodology and language implementation; see, for example, collec-
tions edited by Gries [1.5], and Bauer and Eickel [1.1], respectively.

The denotational approach to language description may be traced back to Frege
[1.4), Carnap [1.3], and Tarski [1.17]. Its use for formal description of programming
languages was developed by Scott and Strachey [1.16]. Montague [1.11] gave a
denotational description of a fragment of a natural language.

1.1 Bauer, F. L. and J. Eickel (eds.). Compiler Construction, An Advanced
Course, Springer, Berlin (2nd edition, 1976).

1.2 Carnap, R. Introduction to Semantics, Harvard University Press, Cambridge
(1942).



