PASCAL

An Introduction to
Methodical Programming

W Findlay & D A \Watt

Pascal
An Introduction to

Methodical Programming

William Findlay & David A. Watt

Computing Science Department,
University of Glasgow

Pitman

Pitman Pubhishing Limited
39 Parker Street London WC2B 5PB

Associated Companies

Copp Clark Pitman Toronto

Fearon Pitman Publishers Inc San Francisco
Pitman Pubhshing New Zealand Ltd Wellington
Pitman Publishing Pty Ltd Melbourne

© W Findlay and D A Watt
First Published in Great Britain 1978
Reprinted 1979

All nghts reserved No part of this publication may be reproduced
stored In a retrieval system or transmutted in any form or by any
means electromic mechanical photocopying recording and/or
otherwise without the prior written permission of the publishers

This book may not be lent resold hired out or otherwise disposed of
by way of trade 1in any form of binding or cover other than that in
which it 1s published without the prior consent of the publishers
This book is sold subject to the Standard Conditions of Sale

of Net Books and may not be resold in the UK below the net price

Printed by photohithography and bound in Great Britain
by Biddles Ltd Guildford Surrey

ISBN 0 273 01220 7

Preface

This book is -intended for use in conjunction with a first course in-
computer programming based on the. programming Llanguage Pascal. The
reader is assumed to have had no previous exposure to computers, and to
have only elementary mathematics. Programming principles, good style
and a methodical approach to program development are emphasized, with
the intention that the book should be useful "even to those who must
later write programs in a language other than Pascal. Thus our primary
objective is simply to teach readers how to write .good programs.

A secondary objective is to present an introduction to Pascal. In
this respect the book should be useful not only to novices but also to
readers with some Limited experience of programming in another language.

Pascal was introduced in 1971 by Professor Niklaus Wirth. His aim
was to make available a language which would altlow programming to be
taught as a systematic discipline and in which the techniques of both
“scientific" and ‘"commercial" programming could be convincingly
demonstrated. The adoption of Pascal -has .been rapid and widespread, to
the extent that it has become the lingua franca of computing science.

For our present purposes what is really important is the clarity with
which fundamental programming concepts may be expressed in Pascal. Most
of the book is devoted to a treatment of these fundamentals, presented
in such a way that the reader should be convinced of the need for each
language feature before he is shown how it i realized in Pascal. Since
Pascal contains only a few features which are not truly fundamental,
these remaining features are also covered, briefly, for the sake of
completeness.

Use of the book
The best way to acquire a methodical approach to programming is
subcensciously, by imitation, and the best time to start is right at the
beginning. The technique of programming by stepwise refinement is
therefore imparted mainly by consistent example throughout the book.
Nevertheless, two chapters are devoted exclusively to programming
methodology. The first, Chapter 7, introduces the methodology by means
of a case study, and is placed early enough to encourage good
programming habits from the start. The second, Chapter 20, applies the
methodology to realistically-sized problems, by means of two further
case studies. Although this chapter comes at the end of the book, the
case studies can and should be read at an earlier stage: Case Study II

v

~after Chapter 16, and Case Study III after Chapter 17.

The main text falls naturally into six parts. Part I (First Steps in
Programming) aims to bring the novice as soon as possible to the stage
of writing and testing complete programs in a methodical manner. This
part covers the INTEGER and BOOLEAN data types, input and output, and
the basic control structures of sequencing, selection and repetition.
Its highlights are the first complete program, in Chapter 4, and the
introduction of a methodology, in Chapter 7. Part II (More Data Types)
covers the remaining simple data types, 'such as CHAR and REAL, and
arrays. Part III (More Control Structures) completes the treatment of
control -structures. Part IV (Subprograms) introduces functions and
procedures. #his.is the pivot of the book - the reader who has mastered
the material up to this point can reasonably call himself a programmer.
Part V (More Data Structures) completes the coverage of Pascal's rich
variety of data structures with records, strings, files, sets and
pointers. Most of these features are not found 1in many other
programming Langdages, but they contribute substantially to Pascal's
expressive powér. Part VI (Programming Methodology) consists of the
chapter of case studies. ,

Some of the.topics could be skipped on a.first reading, and are so
marked in the Llist of contents and in the text. These same topics may
be omitted altogether if time presses. '

‘ExampLes'

Every .non-trivial example used in this book has been tested on a
computer. We challenge readers to find any errors in them!

Exercises

Each chapter is followed by a set of exercises. The more difficult
exercises are marked with asterisks (*). Some of the exercises are
intended to be answered on paper, to provide practice in the use of the
_language features introduced in the chapter. Answers to a selection of
such exercises are provided. The remaining exercises are designated
programming éxercises, which involve the writing of completé programs to
be be run and tested on a computer. Practical experience of this nature
is essential to every programmer. (Not all the programming exercises
need be attempted.)

A programming course should be *supplemented by a programming
laboratory, in which a series of programming exercises selected by the
course organizer should be undertaken. The programming exercises herein
may be used to assist in such a selection. ’

References

We have not attempted to write a work of reference, but we hope that the
arrangement of the material, together with the appendices and the index,

vi

will assist the reader to find information on specific points. The
standard reference on Pascal is “Pascal User Manual and Report"” by
Kathleen Jensen and Niklaus Wirth (Springer-Verlag, New York-
Heidelberg~Berlin, = 1975). For those wishing to study programming
further we can wholeheartedly recommend "Algorithms + Data Structures =
Programs" by Niklaus Wirth (Prentice-Hall, Englewood Cliffs, New Jersey,
1976).

Acknowledgments

Like all programmers, we owe a great debt to Professor Edsger Dijkstra,
whose insights into -the creative aspects of programming we have
attempted to reflect. Equally, we wish to acknowledge the work of
Professor Niklaus Wirth, whose programming language Pascal is by far the
best tool avaitable today for teaching the fundamental concepts of
programming.

We also wish to thank our colleagues in the Computing Science
Department of Glasgow University for their encouragement and advice, and
in particular Dr John Jeacocke whose perceptive comments were of great
assistance. Our gratitude goes to Professor D.C. Gilles for allowing us
ready access to the Department's PDP 11/40 computer, which we used to
prepare and type camera-ready Copy.

_W. Findlay
D. A. Watt

April 1978

vii

Contents

{Topics marked with an asterisk may be omittedvon a first reading.)}.

PREFACE

PART I FIRST STEPS IN PROGRAMMING
Chapter 1. Computers and programming
1.1. Introduction
1.2. Hardware and software

1.3. Programming languages
Exercises 1

Chapter 2. Data: types, constants and variables
2.1. Data and data types
2.2. Constants and variables
2.3. pefinitions and declarations in Pascal
2.4, Assignment statements

Chapter 3. The data type INTEGER
3.1. INTEGER constants and variabLes
3.2. INTEGER expressions and a551gnments
Exercises 3 ‘

Chapter 4. Input and output; the complete program
4.1, Input and output of data V
4.,2. Basic input
4.3. Basic output

" 4.4. The complete program
4.5. - Programming style
4.6. Further input and output
Exercises &

Chapter 5. The data type BOOLEAN
5.1. Conditions in programming
5.2. Comparisons
5.3.” The BOOLEAN operators.
5.4, Using BOOLEAN data
5.5. *The rules of Boolean Algebra
Exercises 5

18
18
19
20
21
24
25
28

30
30
31
32
34
35
37

ix

" Chapter 6. The flow of control
6. Control structures
6.2. The WHILE statement
6.3.° The IF statement
6.4. Nested logic
Exercises 6

Chapter 7. Programming methodically
7.1. Programming by stepwise refinement
7.2. Making refinements
7.3. Testing and correcting
7.4, Documentation
7.5. Case Study I: the traffic survey problem
7.6. The software development cycle
Exercises 7

PART II MORE DATA TYPES
Chapter 8. Ordinal types and type definitions
8.1. The data type CHAR
8.2. Enumeration types
8.3. Subrange types
8.4. Ordinal types in general
8.5. Type definitions
Exercises 8
Chapter 9. The data type REAL

9.1. Real numbers and real arithmetic
9.2. Real arithmetic in Pascal
9.3. Programming with REAL data

Exercises 9

Chapter 10.
10.1.
10.2.
10.3.
10.4.
10.5.

Arrays
The need for arrays
Arrays in Paseal
Elementwise processing of arrays
Types of subscripts and elements

Multi-dimensional arrays -

Exercises 10

PART 111 MORE CONTROL STRUCTURES

Chapter 11.
1.1.
11.2.
11.3.
11.4.

11.5.

More about flow of control
what further control structures do we need?
Multi-way selection: the CASE statement
Count~controlled loops: the FOR statement

*Loops with at lLeast one iteration:

the REPEAT statement
*Exceptional flow of control: the GOTO statement

Exercises 11

39
39
40
45
47
49

50
50
55
57
59
60
66
67

69

72
75
77
80
81

83
83
85
88
91

93
93
94
98
101
104
106

109
109
109
113

118
121
124

PART 1V SUBPROGRAMS

Chapter 12.
12.1.
12.2.
12.3.

Functions
The need for functions
Functions in Pascal
peclarations inside functions

Exercises 12

Chapter 13.
- 13.1.
13.2.
. 13.3.
13.4.
13.5.

Procedures
The need for procedures
Procedures in Pascal
Value-parameters and variable-parameters
The virtues of procedures and functions
The scope rules of Pascal

Exercises 13

Chapter 14.
14.1.
14.2.
Exercis

PART V MOR

Chapter 15.
15.1.
15.2.
15.3.
15.4.
15.5.
15.6.

*Advanced use of functions and procedures

*Recursive functions and procedures

*Functional-parameters and procedural-parameters

es 14
E DATA STRUCTURES

Records
The need for records
Records in Pascal
Operations on complete records
The WITH statement
Data structures
*Variant records

Exercises 15

»

Chapter 16.
16.1.
16.2.
16.3.

Packed data and strings
Packed data
Thd PACKED attribute in Pascal
Strings and string handling

Exercises 16

Chapter 17.
17.1.
17.2.
17.3.
17.4.

Files .
Files and file structures
Files in Pascal
Text files
*File buffers

Exercises 17

Chapter 18.
18.1.
18.2.
Exercis

*Sets :
*Sets and their use in programming
*Sets in Pascal ’
es 18

127
127
127
132
135

137

137
138
141
149
153
158

160
160

165

167

169
169
170
173
175
177
180
184

186
186
187
188
192

195
195
197
201
204
207

209
209
210
215

“xi

Chapter 19. *Pointers and linked lists
19.1. *Pointers
19.2. *Dynamic data structures
19.3. =Pointers in Pascal
19.4. =*Linked list processing
Exercises 19

PART VI PROGRAMMING METHODOLOGY

Chapter 20. Programming methodology: case studies
20.1. Programming by stepwise refinement: a review
20.2. Case Study II: text formatting
20.3. Case Study I1I: transferable vote elections
20.4. Some general principles
Exercises 20

APPENDICES

Append1x 1. Collected syntax diagrams
1.1. The program

1.2. Statements

1.3. Expressions

1.4, Variables)

1.5. pefinitions and declarations

1.6. Types

1.7, Constants

1.8. Identifiers

Appendix 2. Reserved words and special symbols
2.1. Reserved words
2.2. Special synbols and their representations

Appendix 3. Predectared ent1t1es_

Append1x 4. Legible input and output
4.1. The procedure READ
4.2. - The procedure READLN
4.3, The procedure WRITE
4.4, The procedure WRITELN _
4.5, Other procedures and functions

Appendix 5. Character sets
5.1. The ASCII character set
5.2. The EBCDIC character set

ANSWERS TO SELECTED EXERCISES

INDEX

216
216
217
218
220
224

225
225
226
244
257
262

265
265
266
268
269
270
272
273
274

275
275
275

276

280
280
280
281
281
281

282
282
282
283

303

Part I First Steps in Programming

Chapter 1 Computers and programming

1.1 INTRODUCTION

- There can be few people, at least in the industrialized countries of the
world, who have never had any contact with computers. Computers are now
routinely used for mundane tasks such as producing bank statements,
financial reports, electricity bills and payslips. Hotel and airline
reservation systems have been made possible by computers. In industry,
computers control machine ‘toels and chemical plant. Scientists use
computers to analyse experimental data, doctors generate '‘cross-section"
X-ray pictures, psychologistd simulate mental processes. Manned and
unmanned space exploration 'would hardly. be possible without tne
assistance of computers. On "the fri\)otous~ side, computers have been

.programmed to. play games such as backgammon and chess (but not very
well). More ominousiy, military applications have a long history.

Computing has gbouh from .nothing, just thirty years ago, to a
position as one of the world's largest industries. There no sign that
this expansion is slowing down. Indeed the development of cheap
integrated circuits means that domestic and personal computers are now
becoming practical.. These will more and more invade everyday life as
domestic appliances, motor vehicles, communications systems and the Llike
come increasingly to depend on them. This accelerating process has
rightly been called the Second Industrial Revolution. Nobody can yet
foresee .with any certainty what the ultimate consequences for society
may be, but it is already clear that vast changes lie ahead for us all.

Consider the impact aof personal calculators on accepted ideas about
education and numeracy. Computer technology will soon have a similar
effect in all areas .of clerical and skilled manual work. This book was
prepared using a computer, making it considerably Lless experisive than
would be possible with traditional printing technology. On the other
hand the craft of the compositor has been made redundant, and the end
product lacks the elegance he might have given it. Concerns ljke these
make it’ imperative that computers be understood as widely as possible.

One of the most common misconceptions 1is that computers are
"problem~solving machines. Nothing could be further from the truth.
In fact the successful application of computers is made possible.only by
finding solutions to problems which computers themselves have created.
The most obvious of these is that a computer is useless without a
program to control it. The writing of good computer programs is both a
vital part of the modern economy and a fascinating intellectual .
exercise. Such is the topic of this book. -

1.2 HARDWARE AND SOFTWARE

Early computers filled large rooms with tall metal racks on which were
fixed thousands of vacuum tubes, tanks of hot mercury and panels of.
flashing Llights. The resemblance to an ironmonger's store was $oO
compelling that the computer engineers of the time wryly talked about
their creations as "hardware'. Nowadays a considerably more powerful
computer fits easily in a briefcase, but the principles of its operation
are the same.

The hardware of every digital computer consists of a processor, a
store and an assortment of peripheral devices. The processor is the
unit which actually performs the calculations. It contains a control
unit to direct operations, as well as an arithmetic unit. The latter is
equivalent to an electronic calculator, but much faster, being capable
of a million or more operations per second. To make use of this speed
the processor must be able to access its data equally quickly.
Retaining data for rapid access by the processor is the job of the
computer's store. Some calculators have a handful of '"registers" in
which numbers can be kept. The store of a modest computer contains tens
of theusands of registers. A calculator's numeric keys and display
correspond to the peripherals or input/output devices of a computer.
These allow data to be placed in the store and results to be taken out..
Though very fast by human standards, peripherals are usually much s lower
than the processor and store.

A calculator is- given instructions by pressing its function keys.
However the great speed of a computer would be wasted if it could not be
supplied with instructions as quickly as it obeys them. To make this
possible the computer's dinstructions, encaded in numerical form, are
held in store along with the data. The computer works in a cycle as
follows.

(1) The control unit fetches the next instruction from store.

(2) The instruction is decoded into electronic signals by the control
unit. ‘

(3) In response to these signals the arithmetic unit, the store, or a
peripheral device carries out the .instruction.

(4) The whole cycle repeats from step (1).

In this way long sequences of instructions can be obeyed automatically
at the full speed of the processor. Such a sequence of instructions is
called a program.

Computer instructions are very s1mple in their effect, the following
examples being typical.

(a) Read an item of data into store from an input device.

(b) Copy an item of data from one register to another.

(c) Add the contents of two registers and place the sum in a third,

(d) If the content of a register represents a negative number, take the
next instruction from a different part of the program; otherwise
continue with the next instruction in sequence.

(e) Write an item of data from store to an output device.

It has been proved that anything which can be computed, in principle,

can be computed in a finite number of steps by a program consisting of
‘elementary operations such as these. Such a program is called an
algorithm. It has also been proved that there are results which are not
computable by any machine whatsoever. In these cases it may be possible
to compute an approximation to the desired result. A program to do this
is called a heuristic. Heuristics are also useful when an algorithm
exists but 'is impractically slow or needs too much store. -

The collection of all the programs available in a computer system
constitutes its software. This word was invented to emphasize that the
programs are just as important as the hardware. It also contrasts them
effectively. Hardware is visible, solid and substantial; software is
somewhat intangible. The hardware of a computer system is not easily
changed; the software is usually in a state of flux.

One of the most important parts of the software is the operating
system, a set of control programs which are kept permanently in store.
The operating system carries out many of the routine tasks needed to
prepare and run a user's job, e.g. decidilg which job to run next,
making ready its input, bringing the user's program into store,
allocating it some processor time, and so on. '

1.3 PROGRAMMING LANGUAGES

The earliest computers were programmed in machine code: i.e., by giving
them instructions directly in numerical form. However the drawbacks
were soon recognized.

(a) Because of the very primitive nature of machine instructions,
machine-code programming is both tedious and error-prone.

(b) For the same reason, machine-code programs are difficult to

“understand and to modify.

(c) Programming is a time—consuming and expensive business.- It would be
a great saving to be able to transfer programs between computers,
but a machine-code program is specific to one model of computer and
will not work on any other.

Why not write programs in English? Computing is not unique in
requiring the detailed description of ‘sequenceés of actions: there are
many simitar examples in daily Llife. However, anyone who has ever
struggled with the often mystifying instructions in motor maintenance
handbooks, do-it-yourself manuals, or recipe books will -readily agree
that English is far from ideal for the job. In fact the glories of

“English - its vast scope, its subtlety, its potential for ambiguity and
metaphor - must be considered severe disadvantages when the aim is
literalness, accuracy and completeness. A programming language must aim
at the truth, the whole truth, and nothing but the truth.

English is at the opposite extreme from machine code and precisely
for that reason must be rejécted as a medium for practical computer
programming. What is needed is a middle way: one which combines. the
readability and generality of English with the directness and precision
of machine code. Because of their position relative to machine code,
languages of this sort are called high-level languages.

Knitting patterns offer an interesting example where a similar

3

problem has been faced. A knitting pattern is comparable in complexity
with a modest computer program, so it is understandable that a special
"knitting language' has evolved. It borrows many words from English,
but these are used in stereotyped ways and with definite meanings.
Another noteworthy feature of a knitting pattern is its division into
two parts: a list of the materials and tools needed, followed by a list
of instructions stating how to use them. The programming language used
in this book, Pascal, shares both of these characteristics. :

Any language can be studied from two points of view: that of its
grammar, or syntax, and that of its meaning, or semantics. A good
understanding of both is needed to use it properly. We will find that
the semantics of Pascal can be described adequately in English. On the
other hand a description of its syntax in English would be very tedious.
Instead we will use a pictorial device, the syntax diagram. This is
best explained by an example. Stated in English, the Pascal definition
of an Integer Number is the following. "An Integer Number is a sequence
of one or more Decimal Digits. A Decimal Digit is the character '0', or
'1t, or '2', or '3', or ‘4', or '5', or '6', or ‘7', or '8, or '9'."
Exactly the same information is conveyed by Figure 1.1.

Figure 1.1. Syntax of Integer Numbers

Integer Number:

—(-' Decimal Digit —T—V

Decimal Digit:

IRRE
Ll

This can be understood by following the arrows through the diagram, from
entry to exit, and writing down a specimen of everything you pass. When
you come to a fork, either path may be chosen. As a slightly more
complicated example, Figure 1.2 defines an Identifier, widely used in
Pascal to give things names. The English equivalent of this diagram is
"An Identifier is a sequence of characters beginning with a Letter and
followed by zero or more Letters. or Decimal Digits." The definition of
Letter is omitted:- it is tedious in any form.

Figure 1.2. Syntax of Identifiers

Identifier:

-~ Letter >

A program written in Pascal cannot be directly performed by the
hardware of a computer. To make it executable it must be translated
from Pascal into an equivalent set of machine code instructions. This
translation.can be specified rigorously enough to make it a suitable
task for a computer program. Three programs are involved here: the
translator program, or compiler; the user's Pascal text, or source
program; and the equivalent machine code, or object program. Thus a
Pascal program is run in two distinct stages.

(1) The Pascal compiler is brought into store and activated. It causes
the computer to read the source program, check it for errors, and
convert it into the corresponding object program.

(2) The object program is left in store as the result of stage (1). It
is activated in ‘turn and reads input, performs computations, .and
writes output in exactly the manner described by the original Pascal
program.

Programs often contain errors in the use of the programming language
and these are reported by the compiler during stage (1). The report
usually takes the form of an error message or a number which refers to a
tist of error messages. These error messages are often helpful in
finding the cause of the trouble. (However, the compiler may be misled
by an error into taking Later, perfectly correct, parts of a program as
erroneous. Thus one genuine error can cause a whole group of messages
to be output, many of which are spurious. Nothing more forcefully
reminds a programmer that computers do not understand the programs which
drive them.)

EXERCISES 1

1.1. Which of the following are Qalid Identifiers, according to the
syntax of Figure 1.2?

(a) SEVEN, (b) VII, (c) NMR7, (d) 7, (e) KERMIT, (f) JOE 90,
(g) ABCDEFGHIJKLMNOPQRSTUVWXYZ

1.2. Write down examples of Sentences generated by the following syntax

diagrams.

Sentence:

— Subject

Subject:

- VYerb —» Object

— -

> A + Noun —
L*The ——J [— Adjective 4—)

- Object:

-—Ea . * Noun —
the — L Adjective J

Adjective:

1.

president

L

big small fat thin red
L | R G
Noun:
chok elephant peanut
L L L L
_ Verb:
;!s ;Ee toved reviled

| I G

1.3. Which of the following are valid Sentences, according to the
syntax of the previous exercise?

(a) The big fat president was a crook.
(b) The reds reviled the president.
(c) The elephant ate peanuts.

6

_(d) The small, thin president loved a peanut.
(e) The thin crook was a red.
(f) A elephant was a elephant.

1.4. Write down examples of Chemical Formulas generated by the
following syntax diagrams.

Chemical Formula:

T Component —T>

Componenti

-—Ejr‘ical Formula ~—) Integer Number =
- Element :

gElement:
i B8

<} He ﬂ}1 e
lyLLL’

... €tcC cae

1
L L

