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PREFACE

High frequency sound waves in gases, liquids, and solids have proved
to be powerful tools for analyzing the molecular, defect, domain
wall, and other types of motions that can occur in these media.
Furthermore, low and high amplitude waves in these media have
considerable device applications. These include such uses as delay
lines for storing information, mechanical and electromechanical filters
for separating communication channels, ultrasonic cleaning, testing,
inspection, measuring, machining, welding, soldering, polymerization,
homogenizing, medical diagnosis, surgery, and therapy. Both the
analytical and device uses are increasing at an explosive rate. Some of
the phenomena analyzed in the last five years are acoustic attenuation
due to phonon-phonon interaction, phonon-electron-magnetic field
interactions, nuclear-spin and electron-spin interactions with acoustic
waves, attenuation caused by the motion of point and line defects
(dislocations), as well as such large-scale motions as polymer segments
and chains, and domain walls. Hence, it is evident that this general
field, which has been given the name of Physical Acoustics, is a powerful
investigational tool as well as a source of device application.

Since the field is growing at such a rapid rate it has been thought
desirable to produce a series of books which provides an integrated
treatment of the techniques, applications, and analytical results
obtainable by the use of physical acoustic methods. Since all the
applications and analytical uses depend on the tools and techniques
used to generate and measure stresses and stress waves in gases,
liquids, and solids, this first volume deals with the production, measure-
ment, and application of acoustic waves in these media. As far as the
applications go, emphasis has heen placed on the physical aspects
rather than on the engineering details. However, a complete set of
references is provided for such applications. Since a considerable
amount of material is required to cover these objectives, this first
volume is divided into two parts, A and B. Volume IA covers the
propagation of infinitesimal and finite waves in fluids and mormal
solids, the modifications caused by boundaries, transducers required
to generate low and high amplitude waves, methods for measuring the
properties of such waves, and their uses in dispersive and nondispersive
delay lines as well as in mechanical and electromechanical filters and
in the control of the frequencies of oscillators and time standards.

Volume IB specializes on the use of high amplitude waves in
liquids and solids and on a new series of semiconductor devices which
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viii Preface

are receiving wide use in the measurement of pressures, forces, and
strains, Very sensitive pressure-measuring devices using transistors
provide means for coupling air waves to electrical circuits and hence
act as microphones. They provide an amplification of the acoustic
energy picked up which is larger than that obtainable with carbon
microphones and with a greater efficiency of conversion of de power
input to ac power output. Semiconductor transducers of the depletion
layer, diffusion layer, or epitaxial layer type are producing very high
frequency devices capable of generating shear or longitudinal waves in
the kilomegacycle range. These are of use in device applications and
in the fundamental investigation of very rapid liquid and solid state
motions. The final chapter considers new methods for producing large
motions and strains in solid bodies.

The next three volumes, which are in the process of being written
and edited, apply the principles of Volume I to the analysis of molecular
interactions in gases, liquids, polymers, and other types of solids and
crystals. Volume II discusses the effects and analysis of wave pro-
Ppagation in gases, liquids, solutions, and polymers,

Volume IIIA deals with the effects of point, line (dislocations), and
surface (grain boundary) imperfections on the acoustic loss and acoustic
velocities in polycrystal and single crystal metals and in insulating
crystals. Volume IIIB deals with lattice dynamics, and the final
chapter in this part deals with loss mechanisms in that largest solid
body. the earth.

Volume IV is devoted primarily to those subjects which contribute
to an understanding of solid state physics.

The theories in these volumes are treated in a systematic way and
it is hoped that they will be of permanent value even after the topics
are further advanced. While the primary purpose is to produce a
reference book covering all the principal topics in Physical Acousties,
it is hoped that the books will be useful as advanced texts in graduate
schools, or for readers with advanced training who are entering the
Physical Acousties field.

The Editor owes a debt of gratitude to the many contributors
who have made the volumes of this treatise possible and to the
publishers for their unfailing help and advice,

December, 1963

WagrreN P. Mason
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1. Introduction

This chapter develops the basic equations needed to describe waves in
fluids and solids and applies them to simple situations in order to
illustrate elementary wave phenomena, unobscured by too many
complicating effects.

With rare exceptions, the medium in which waves propagate is
conveniently regarded as a confinuum. Even when using waves to probe
the molecular or atomic structure of the medium, one often relates the
structural parameters to properties of an equivalent continuous
medinm.

In this chapter we first outline some of the fundamentals of
continuum mechanics and then discuss small-amplitude waves in
relatively simple situations.

II. Fundamentals of Continuum Mechanics

In the continuum approach, we postulate fields of density, stress,
velocity, etc. These fields must satisfy the basic conservation laws or
equations of balance of mass, momentum, angular momentum, and
energy. The basic equations of balance apply in any medium. In
addition, there are constitutive relations which characterize a particular
medium. The constitutive relations relate the stress to other variables,
specify the flux of nonmechanical energy, and relate thermodynamic
variables to each other. Examples are Hooke’s law, Newton’s law of
viscosity, Fourier’s law of heat conduction, and the ideal gas equation
of state. Special equations for viscous or nonviscous fluids, elastic or
viscoelastic solids, ete., may be obtained by substituting appropriate
constitutive equations into the basic equations of balance.

A. MATERIAL AND SPATIAL DESCRIPTIONS

Picture a fixed rectangular Cartesian coordinate system with axes
x;,i=1,2,3. Any particular position vector r of components (x,, 2, x,)
denotes a point in space. A point which always moves with the material
is called a particle or material point. Lines or surfaces composed of
particles are called material lines or surfaces. The material inside a
closed material surface is called a body.
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Let every particle be identified by its coordinates at some reference
time #,. These reference coordinates, referred to the same Cartesian
system, will be denoted by (a,,a,,a,), and the corresponding position
vector by a. A particular vector a can serve as a name for the particle
there at the reference time t,, The reference values ¢, and a will some-
times be called initial.

The vectors r and a both specify position in a fixed Cartesian frame
of reference. At any time ¢, we associate each r with an a by the rule
that r is the present position vector of the particle initially at a. This
connection between r and a is written symbolically as

r =r(t,a) or x; = x(t,ay,a,,ay) (1)
where a = r(fya) or a; = Tty @y, @y, @3). (2)

The coordinates a; which identify the particles are called material
coordinates. A description which like Eq. (1) uses (t,a,a,a,) as
independent variables is called a material description.

The inverses of Egs. (1) and (2) may be written

a=afl,r) or a; = a,(t,xy, 2y, ) (3)
where r=aler) o = aglly ). (4)

A spatial deseription uses the independent variables (f, z;, z,,2,), the x;
being called spatial coordinates. When used as independent variables,
the x;s merely specify a point in space. One is frequently interested in
a spatial description of pressure or velocity fields but not at all in the
initial positions of particles. In such cases, a spatial description would
not be pushed to the point of determining the functions o, in Eq. (3),
but would be stopped when the fields of interest are determined.
The terms Lagrangian and Eulerian have been commonly used for
material and spatial, respectively, even though Euler preceded
Lagrange in using both kinds of coordinates (1). We follow Truesdell
and Toupin (2) in using the more descriptive terms material and spatial.

1. Velocity

If we fix the material coordinates (a;,a,,a;) in Eq. (1), then
(%, %, 23) denote the time-dependent coordinates of the particular
particle initially at a. Now the coordinates of any particular particle
depend only on the time, since the vector a merely tells which particle
is under consideration. Hence, if we limit attention to a single particle,
its velocity components are the ordinary time derivatives 7, = da,/dt.
But now recalling the presence of other particles, we see that these
derivatives are really partial derivatives with the s held constant:

dzr, '85)

V= =y =( at (5)

4 gty




4 R. N. Thurston
The velocity vector is

F=v=iy {+ summed) (6)
where i,, iy, i, denote unit vectors in the coordinate directions. In Eq. (6)

and hereafter, any term is understood to be summed over all values of
any subscript which appears twice. That is, i;v; means

and v;(8F [6x;) means v-grad F.

2, Interpretations of ﬁv‘ndfl and divv

Let us compute the rate at which material crosses a fixed surface
element of unit normal vector n and area d4A. In a short time interval

F1a. 1. The meaning of v-n. (v-n)is (1} the volume of material crossing a
fixed surface, per unit area per unit time, or (2) the volume of spacs being swept
out by & material surface, per unit area per unit time. v = material velocity;
n = unit vector normal to d4 ; volume = |v |cosfdtdd = v-ndAdt,

dt, each particle undergoes a displacement given approximately by
vdi. Hence, as seen from Fig. 1, the material which crosses the area
element from the —n side to the +n side in the time interval df is
contained in an approximately prismatic volume element of base area
dA and slant height vdt. The volume of this prism is v-ndA d¢, and its
mass is pv-ndAdt, where p is the density. The volume flow rate
through the element is thus v-nd4 and the mass flow rate is pv-ndA4.
It should be clear that v-n and pv-n are exact expressions for the local
rates of volume and mass flow per unit area, even when v and p vary.
Now if n denotes the unit normal vector outward from a closed
surface as in Fig. 2, the net volume flow rate out of the surface is

v'ndA and the net outward mass flow rate is pv-ndA.

By reinterpreting Fig. 1, we see that v-ndd df is also the volume
swept out by a material surface element in the short time interval dt.
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The volume swept out is positive if it lies on the —n side of the moving
area element at the end of the time interval.

Figure 3 shows the positions of a closed material surface at times
t and t+dt. The two positions of the material surface define three
regions: a volume (1) which is left behind, a common volume (2), and a

v

Fic. 2. The net rate at which material flows out of a fixed closed surface

is ﬁv ‘ndd. v = material velocity; n = unit normal vector.

TIME L+dt

Fia. 3. The net rate of increase of volume inside a closed material surface

is ﬁrn dA. v = veloeity of surface; n = unit normal veetor.

newly acquired volume (3). The volume acquired is obtained by
integrating v-ndAdt over that part of the surface for which v-n is
positive, and the volume left behind is subtracted if the same integral

is continued over the remainder of the surface. Hence ﬁ v-ndA is the

net rate of increase of volume inside a closed material surface of unit
outward normal n, velocity v. In equation form,

%jﬂyﬂ’ =§v-naA 7
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where V denotes the region occupied by the moving body defined by
the closed material surface.

‘We now have two interpretations of ﬁ v-ndd: (1) the net volume

flow rate out of a fixed closed surface, and (2) the net rate of increase of
volume of a body. We obtain two corresponding interpretations of
div v by applying the divergence theorem

ﬁv-nda - ”_[diwdv (8)

and noting that the theorem must hold for any arbitrarily small region.
These interpretations are (1) the limit, as the volume tends to zero, of
the net volume flow rate per unit volume, outward from a fixed volume
at the point where div v is evaluated, and (2) the rate of expansion per
unit volume of a particle at the point where divv is evaluated. If dV
denotes the time-dependent volume of a small body, the second
interpretation says

. .. 1 d
divv -{}]&n_):ﬁw a(dV), (9)

3. Material Derivative

It is important to distinguish between the time variation of a field
gquantity at a fixed point in space and the time variation following a
particle. The rate of change following a particle is of fundamental
importance, and is called the material derivative.

We follow a particle by fixing a. Hence, in a material description
the material derivative is the partial derivative with respect to time.
In a spatial description, the material derivative will be denoted by
djdt or by a dot over the variable.

Let the same field be denoted by F in the spatial description, and
f in the material description. Then

Sfit,ay,a9,a5) = Flt,x,(t,a,, ay, ay), z4t, Qy, @y, @g), Za(t, @y, Bg, Ag)]. (10)
By definition, the material derivative of F is

To obtain a formula for the material derivative in the spatial
description, we differentiate Eq. (10) and use Eq. (11):
dF _df oF ox,o6F oF
'EEE'E_E—FE_B;(E'B?J” gl‘IM‘.IF. (12)
The partial derivatives of F are in the spatial description, while those
of f and z; are in the material description. @F/dt is that part of the




