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PREFACE

Performance is an important aspect of programs. Programs serve specific func-
tions, such as computing payrolls or guiding space ships, and these functions have no
value if the service is either too slow or too unreliable. We recognize that, in general, it
is important to study the performance of the total system (such as spaceships) in
which programs play only a part in mission accomplishment. However, in this book
our emphasis is on studying the performance of computing systems, and the interface
with the larger system is represented by a description of the load offered to the com-
puting system.

Designers of computing systerns must have techniques which help them predwt
system performance because it is too expensive to build a system and later decide that
its performance is unsatisfactory. Values have to be selected for a very large number of
parameters in any computing system' design and system designers need techniques to
help them search the large parameter space. This book is concerned wjth models to
help designers search large parameter spaces rapidly and also to predict system per-
formance.

Many computer scientists are now aware that performance modelmg can have
significant practical value in their work. However, a significant portion of computer
scientists have only a vague notion of modeling techniques and often presume (incor-
rectly) that these techniques are very complex and extremely hard to understand.
This book reinforces the idea that performance modeling ‘has practical utility and
dispzls the notion that the modeling area is complex. Professional computer seientists,
as well as professors and students will find this book helpful in getting a clear intro-
duction to the use of models in computing system performance analysis. A wide range
of models is covered and the relevance of the models is emphasized. Models are dis-
cussed in sufficient dépth that the reader can immediately grasp key issues and apply
the models to his work.

~ Models such as those discussed in thls book have been used for some time in
diverse disciplines, though their utility in computing systems design has not been
apparent until recently. The general area of modeling has been called Operations
Research. Recently, a significant number of operations researchers have become inter-
ested in applications of their discipline to computer system design and tuning. There
also seems to be increasing agreement among operations researchers that for models
to have s;gmﬁcant value it is at least as important to gain expertise in the systems
being modeled as it is to have expertise in the theory of modeling. This book will prove
valuable to operations researchers, management scientists,.statisticians, systems engi-
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X ‘ PREFACE

neers, and applied mathematicians who are interested in applying their techniques to
analyze computer systems. performance. This book shows how different types of
models can be usefully applied to computing systems analysis.

Chapter 1 introduces the reader to statistical analysis of performance data at a
very basic level. Statistical analysis is the key to performance modeling because with-
ouf experimental data there cannot be good models and analysis is required to under-
stand large volumes of raw data. This chapter contains clear descriptions of recent
advances in the statistical analysis of performance data. Many breakthroughs in this
area were discovered by the authors of this chapter. 4

Discrete-event simulation methods have been used to model systems for a very
long time. The question that is most often asked relating to simulation is: How does
one know whether a simulation has been run long enough to have a high degree of
confidence in simulatidn results? Even though discrete-event simulation is the most
widely used performance modeling tool, very few computer scientists know how prob-
ability theory can be used in answering the crucial question regarding confidence in
simulation results, Chapter 2 uses the theory of regenerative processes to address this
and other related questions. The author of this chapter is a pioneer in this field.

Simulations suffer from the fact that they may require an enormous amount of
computation time to obtain meaningful results. Analytic methods based on queueing
theory generally require much less computation. It is sometimes helpful for a designer
to use an interactive analysis package which rapidly provides estimates of performance
metrics. Simulations are generally unsatisfactory in such an interactive environment.
Chapter 3 discusses recent results in congestion models of computing systems. Models
based on networks of queues have been particularly useful in computing systems
analysis. The author of Chapter 3 is a leading figure in the area of queueing network
models. . S »

It has been recognized for some time that a key problem in utilizing modeling
theory is the paucity of computer scientists with experience in modeling (and opera-
tions researchers with experience in computer sciences). Another key problem is that
there is generally relatively little time to develop and analyze models; people who
demand performance estimates usually should have requested the estimates several
months earlier. It is therefore crucial that performance modelers use as many standard,
“canned” analysis programming packages as possible. It is also extremely important
that modelers have formal languages to describe models to each other and to analysis
packages. Chapter 4 discusses a versatile system, called RESQ, which addresses both
these problems. There is enough detail in this chapter to help the user build his own
versatile analysis package. RESQ.is the best analysis package in existence today. The
authors are leaders in language development for modeling as well as in queueing mod-
els and simulation. '

Graph models are widely used in computing systems analysis. Graphs are used in
the analysis of programs, recognition of parallelism, scheduling resources, and a
variety of other areas. Chapter 5 starts with basic concepts and then discusses recent
advances in this area. The reader will obtain a clear understanding of graph models, a
thorough knowledge of the application of these models in certain areas of computer
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sciences, and an appreciation of the value of graph models in all areas of computer
sciences. Expository papers by the author of this chapter are among the most widely
quoted in this area.

Graph theory is a part of the discipline of combinatories. Chapter 6 discusses
applications of combinatories which cre not emphasized 'in the previous chapter. Com-
binatoric models are used in the analysis of algorithms, resource scheduling, systems
design, and in designing communication network topology. Recent developments in
complexity theory, particularly the notion of NP-completeness, are of great impor-
tance to the professional computer scientist as well as to theoreticians. Computer
professionals often refer to some problems as being tractable and to others as being
intractable or hard. They develop optimal or exact algorithms to solve certain problems
and heuristics to solve others; the farmer type of algorithm is preferred but the latter
type may be used for hard problems. It is vitally important for computer professionals
to be aware of the precise definitions of these terms; it is also important that they
understand the complexity of the problems that they are dealing with so that they
select problem-solving methods most likely to yield satisfactory solutions. Chapter 6
introduces the reader to these important concepts. The authors have made substantial
contributions in this area and also have a remarkable capacity for cléar exposition.

The problem of scheduling resources is considered in Chapters 5 and 6. However,
there is an important aspect of resource scheduling, deadlocks, which deserves an
entire chapter to itself. Deadlocks arise in concurrent systems when no process can
proceed any further because they cannot obtain the resources they require for further
processing. The key issues are those of recognizing states which may lead to deadlock
and n}bnaging resources to avoid (or reduce the possibility of) deadlock. Though
resourée management has been studied in several branches of engineering and busi-
ness, the problem of deadlocks has received the most attention in computer sciences.
Chapter 7, written by the leader in this field, introduces the reader to the problem of
deadlocks with the aid of clear examples and illustrations. This chapter will prove
useful to computer scientists and to people concerned with resource management in
general. ’

-The performance of computing systems depends in large part upon the effective
management of memory. It is crucial that program behavior be understood and that
memory be allocated to those programs which are most likely to contribute to effective
system performance. Chapter 8 is a comprehensive, lucid discussion of the problem of
‘optimally managing memory. It is written by a pioneer in operating systems theory,
who also identified the working set principle, which is the key concept in understanding
program behavior with reference to memory.

Chapter 9 is an introduction to mathematical programming. No prior acquain-
tance with mathematical programming is required to understand this chapter though
a basic knowledge of linear algebra is assumed. The goal of this chapter is to provide
the reader who is unfamiliar with this area with a clear, thorough understanding of the
key concepts of optimization theory. This chapter is designed to help the reader (a)
to identify sitvations in which mathematical programming techniques will help in
computer systems design problems, (b) formulate systems design problems as mathe-
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matical programs, and (c) communicate with operations researchers. This chapter
emphasizes intuitive understanding at the expense of rigor. The chapter relies on illus-
trations and examples in elucidating key concepts.

This book could be used as a text in a beginning graduate course in computer
systems modeling. A familiarity with intioductory probability theory and simulation
is assumed. The text should be supplemented with descriptions of case studies and
measurement techniques found in the proceedings of recent workshops such as those
sponsored by IFIP working group 7.3. on computer systems performance modeling,
measurement and evaluation and ACM SIGMETRICS. Case studies should be select-
ed depending upon the specific interests of students; for instance, case studies can be
drawn from computer networks, data-base systems, or multiprogrammed operating
systems. The modeling issues descussed in this text apply to a variety of cases. This
book, supplemented with case study material, is planned to be used in first-year grad-
uate courses in the Computer Sciences Department, University of Texas at Austin.

K. Mani CHANDY
RayMmonp T. YEH

Austin, Texas
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CHAPTER 1

STATISTICAL METHODS
IN COMPUTER
PERFORMANCE ANALYSIS

Y. BARD

M. SCHATZOFF
IBM Cambridge Scientific Center
Cambridge, Massachusetts

1.1. INTRODUCTION

Application of statistical methodology to the study of computer system perfor-
mance seems quite natural in light of our ability to generate very large volumes of data
on many variables, whether by hardware or software instrumentation, and our need
to understand what such data have to say about the system from which they are
derived. Statistics provides tools for summarizing the salient features of data, search-
ing for meaningful patterns, detecting instances of anomalous behavior, understand-
ing complex relationships among many variables, and designing efficient experiments
for determining the effects of factors that can be controlled.

The types of data generaily collected for computer systems usually mclude utili-
zations of various system resources such as the central processing unit, 1/O devices,
and channels; counts of events such as various classes of program interrupts; and
tracing of program paths initiated by specified events. The level of detail of data col-
lection depends on the purposes for which the data are to be used. At one level, the
purpose might be to provide overall descriptions of system, subsystem, or program
behavior. At another level, the objective might be to answer specific questions per-
taining to certain aspects of these behavioral phenomena. Or, we might wish to predict,
control, or improve system performance under stipulated conditions.

Statistics provides a useful methodology for approaching problems at all of these
levels of inquiry. Because of the stochastic nature of events occurring in the operation
of a computer system, it is natural to think of describing the resulting data in terms
of probability distributions. Such descriptions entail questions of fitting distributions .

1



2 STATISTICAL METHODS !N COMPUTER PERFORMANCE ANALYSIS / CHAP. 1

to data, testing goodness of fit, estimating relevant parameters of fitted distributions,
and statistical testing of hypotheses concerning such parameters.

In Section 1.2, we shall outline some of the basic notions of probability and statis-
tical inference to be used in subsequent sections. Techniques such as regression and
correlation analysis, which apply to the study of the joint distributions of two or more
variables, are treated in Section 1.3. Concepts of design and analysis of experiments,
pertaining to situations in which one or more factors can be controlled by the investi-
gator, are dealt with in Section 1.4. Finally, in Section 1.5, we shall examine the appli-
cability of design of experiments to the problem of optimizing or tuning computer
systems. .

As a prelude to the ensuing sections, we shall introduce the idea of a data matrix,
in which each row contains observations on a number of variables, taken at a given
time. Successive rows then represent observations taken at successive points in time.
Determination of the appropriate lengths of sampling intervals is itself a question of
some importance, for which there is no definitive answer. The choice depends on
factors such as impact of the measurements on system performance, activity level of
the system, degree of time dependence in the data, and desired accuracy of results.
Exploratory data analysis can usually provide reasonable guidelines as to an appro-
priate choice of sampling interval.

1.2. STATISTICAL PRELIMINARIES

1.2.1. Random Variables and Probability
Distributions

The data for a single variable, as recorded in a particular column of a data matrix,
may be viewed as a sample drawn from a hypothetical population consisting of all
possible values that the variable might assume. If the data -generating mechanism
were allowed to run indefinitely, we could observe the frequencies with which obser-
vations fall in various intervals. Thus, the characteristics of the hypothetical popula-
tion could be described in terms of a probability distribution, from which one could
calculate the proportion of all possible observations lying within any specified interval.
Usually, we are unable to bbseryc the entire population and must confine our infer-
ences about the population to observations taken on a sample drawn from it. Pro-
cedures for selecting samples are the subject of sampling theory, whereas methods for
making statements about the nature of the underlying population derive from prin-
ciples of statistical inference.

Let us denote a random variable by X and a possible value of the variable
by x, The distribution function F(x) for the random variable X is defined by the fol-

lowing relation: F(x) = prob (X < x) = j " dF(y). With this definition in hand we
can readily express the probability that X lies within a prescribed interval (a, b) by
prob (@ < X £ b) = F(b) — Fla) = jb dF(x). If F(x) is a continuous function, then
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dF(x) = f(x) dx, and f(x) is said to be the density function of x. In the case of a dis-
crete-valued random variable, the foregoing Stieltjes integral reduces to a suimation.
For example, if X is defined only on the nonnegative integers, then F(x) = Y 7., f(»),
where f(x), the probability that X = x, is called the frequency function of x.

The mathematical expectation or mean of a random variable is defined by

u=EX)= J‘:xdF (x). This is the center of gravjty of the distribution, since,

E(X — E(X)) = 0. The variance or second central moment of a random variable is
defined by ¥(X) = E(X — p)* = EX* — p*. It provides a measure of the dispersion,
or spread of the distribution. In general the kth central moment of a distribution is
defined by u, = E(X — p)*. It is straightforward to verify that the kth moment of
CX, where C is a constant, is equal to C*x, and that E(X — 0)2 is minimized when -
0=pu.
Let prob (A4) be the probabxh&of the event 4. Two random variables X and Y
are said to be statistically independent ifprob[(X € I)and (Y € J)] = prob(X € I) x
prob (Y e J)for all intervals /and J. Let A be theevent X € Tand Btheevent Y € J.
Then the conditional probability of the event B occurring, given that 4 has occurred,
is defined as prob (B|A) = [prob (4 and B)] + prob (4). Thus, if X and Y are statis-
tically independent, prob (B|A4) = prob (B). :

Two events A and B are said to be mutually exclusive if prob (4 or B) = prob (4)
+ prob (B). In general, prob (4 or B) = prob (4) + prob (B) — prob (4 and B).
When A and B are mutually exclusive, prob (4 and B) = 0 '

Example 1

Suppose the interarrival times of messages arriving at the CPU of a data pro-
cessing system are exponentially distributed with density function f(1) =
de~*, t> 0. Then the mean and variance of t are given, respectively, by

p= [ therdt=1/3and g* = f " pde# di — (1J2) = 1/A2.
0 Q0

Example 2

When interarrival times are exponentially dlstnbuted it can be shown that the
. number of arrivals x in any interval of length ¢ has a Poisson distribution,
defined by the probability mass function

- A
J(x) = l(}"), x=0,1,...
The mean and variance of the Poisson distribution are both equal to Ar.

The two preceding distributions, which are very important in the study of queue-
ing problems, are derived from the following two postulates:

1. The distribution of the number of occurrences depends only on the length
of the interval and not on its position in time.

2. The number of occurrences in different intervals are statistically independent.
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For any two random variables X and Y, E(X + Y) = E(X) + E(Y). The
covariance of X and Y is defined by
cov (X, ¥) = E(X — XY — )

where u, and y, are the expectations of X and Y, respectively. If X and Y are statis-
tically independent, then | :

cov (X, ¥) = E(X — thz)-E(Y — ty) =0
and .
V(X + Y) = V(X) + V(Y)
These properties extend to any number of mutually independent random variables

X ..., X, so that

E(3 ax)) = ¥ a.EX)
and

v(% ax.) = 3, atvX)
When the X, are not mutually independent, we have

cov l:(hf:l a;X,)v (;:; b, X ,)] = Z:,‘l ;! ab, cov(X,, X))

The correlation coefficient for two random variables X and Y is defined by

Py = cov(X,Y)
‘ v v(Y))?
Given a set of p random variables X, .. ., X,, the covariance matrix is defined as

a p X p matrix whose (i, j) element is given by cov (X;, X)). The correlation matrix
is defined in an analogous manner.

1.2.2. Sampling Theory

Suppose that we draw a random sample of n observations, x,, ..., X, frgm an
infinite population having mean u and variance o2. The x, are observations on mutu-
ally independent random variables. Any function g(x, .. ., x,) of the observations is
also a random variable. In particular, we shall be interested in functions such as the
sample mean and variance. Let ¥ = (1., x,)/n denote the sample mean. From the
results of the previous section we have

and

I

V@) =3 V(ﬁ) B yp
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In many instances, it is a simple matter to derive not only the expectations and
variances of means of independently distributed random variables but also their entire
sampling distributions. The interpretation of a sampling distribution is as follows.
Suppose that random samples of size n are drawn over and over again. Each such
sample would result in a particular value of %, so that these sample means may
themselves be viewed as random variables having a common probability distribution.
Two important theorems relating to the sampling distribution of x follow.

Theorem 1 The Law of Large Numbers

Let X,,..., X, be a sequence of mutually independent random variables with
a common distribution having expectation g. As n — oo, the probability that
X differs from yu by less than any arbitrarily prescribed value € tends toward 1.
In other words, the sample mean tends toward the mean of the parent popula-
tion with probability 1.

Theorem 2 The Central Limit Theorem

If the random variabies in the above sequence have variance a2, then as # — oo,
Z = n'?, (X — p)lo tends toward the normal distribution with mean 0 and
variance 1, with the density function given by ‘

1) = @ry 7 exp (SF)

This distribution will be denoted by the notation N(0, 1), and Z ~ N(0, 1) means
that Z is distributed as a N(0, 1) random variable. The N(0, 1) distribution is a special
case of the normal distribution with mean y and variance o2, denoted N(x, ¢%). The
density function for the N(u, o%) distribution is given by

f(x) = Qr) " exp {_l(_x____ewl_‘}

The normal distribution is completely described by its mean and variance. Linear
transformations of normally distributed random variables are also normally distrib-
uted. In particular, if X ~ N(g, 0?), then Z = (X — j)/e ~ N(O, 1). The normal
distribution is symmetric about g; the intervals g + 1.960 and u i 2.576¢ contain
95% and 999, of the distribution, respectively.

Although the central limit theorem is an asymptotic result, it can be shown that
for a wide class of random variables it provides a good approximation for fairly smail
values of n, say on the order of 10 or 20. This result is extremely important and pro-
vides the basis for development of normal sampling theory. In many real-life applica-
tions, observed values of random variables may actually be sums of small random
perturbations; furthermore, even when the observations themselves have an arbitrary - '
distribution the sample means are approximately normally distributed. .

Since the normal distribution plays such an important role in statistics, we shall
list here some of its important properties. Derivations may be found in Fraser (1958)..
or Kendall and Stuart (1963). .
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1. If X ~(N(0, 1), then Y = X2 ~ xi, where x} denotes the chi-square distri-
‘bution on one degree of freedom. Degrees of freedom refer to the number of
independent components into which a random variable may be’ decomposed.

2. IfY,,..., Y, are independently distributed as N(O, 1), then 35, Y7 ~ xi,
where y2 denotes the chi-square distribution on k degrees of freedom.

3. If X and Y are independently distributed-as N(0, 1) and y? random variables,
respectively, then ¢ = k'/2X/Y'/? s distributed according to the Student ¢
distribution on k degrees of freedom, denoted ¢,. '

4. If Y, and Y, are independently distributed as yi, and x2., respectively,
then § = (Y, + k,)/(Y, + k,) has the F distribution on k, and k, degrees
of freedom, denoted F,, 4,. - -

The above results provide the basis for distribution theory related to sampling
from a normal distribution. Suppose that x,, . . ., x, are a random sample drawn from
the N(u, o?) distribution. Then

. £=/n) X x ~ N, o?[n).

(n— 1)s? =T, (x, — D> ~ a?qi,. -
i and s? are independently distributed. ' ‘
(n'2)E — wis? ~ 1,

n(E — p)fs? ~ Fypi-

[T

Tables of the normal, ¢, y?, and Fdistribution functions may be foundin Pearsoil
and Hartley (1962) as well as in a number of statistics texts, s

1.2.3. Statistical Inference

The foregoing results provide the distribution theory essentials for discussing
aspects of statistical inference related to the normal distribution. By statistical infer-
ence, we refer to the processes by which we make inferences concerning the charac-
teristics of a population based on samples drawn from that population. The subject
of statistical inference is a controversial one from a philosophical viewpoint, giving
rise to several schools of thought that differ from one another principally in their
interpretation of probability. In this section, we shall deal only with the concepts
of. significance tests and -confidence intervals, leaving philosophical discussions of
statistical inference to others. More complete discussions of statistical inference are
contained in Fraser (1958), Kendall and Stuart (1963), and' Lehmann (1959).

Suppose that we draw a sample from some population for the purpose of learn-
ing about its characteristics, or possibly making a decision, based on what we have
obscrved. The population may be viewed as having a probability distribution with
one or more parameters whose values are unknown. We may be interested in estimat-
ing the values of these parameters or in testing hypotheses concerning their values.
These notions are perhaps easiest to describe by means of simple examples.



