Software Requirements
Analysis and Specification

ALAN M. DAVIS

Software Requirements
Analysis and Specification

ALAN M. DAVIS

BTG, Inc.

Prentice Hall, Englev - - “%i¢% New Jersey 07632

Libcary of Congress Cataloging-in-Publication Data

Davis. Alan M, (Alan Michael)
Software requirements : analysis and specification / Alan M. Davis.
p. cm.
Includes bibliographical references
ISBN 0-13-824673-4
1. Computer software—Development. L Title.
QA76.76D47D38 1950
005.1"2—dc20 89-16392
CIp

Editorial/production supervision: bookworks
Cover design: Victoria A. Heim
Manufacturing buyer: Rofert Anderson

About the cover: The sclection of Victoria Heim’s “Hands on Hands”
was inspired by the What vs. How Dilemima described in section 1. 2. 1.

© 1990 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs. New Jersey 07632

)

The publisher offers discounts on this book when ordered in bulk
quantities. For more information write:

Special Sales/College Marketing
Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, New Jersey 07632

All righis reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing {rom the publisher.

Printed in the United States of America

1098 765432 1°
ISBN D0-13-824L73-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Liniited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delli
Prentice-Hall of Japan, Inc., Tokyo

Editora Prentice-Halt do Brasil, Lida., Rin de Janeiro

List of lllustrations

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-§.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 1-10.
Figure 1-11
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.
Figure 1-18.
Figure 1-19.
Figure 1-20,
Figure 1-21.
Figure 1-22,
Figure 1-23.
Figure 1-24.
Figure 1-26.
Figure 1-26.
Figure 1-27.
Figure 2-1.
Figure 2-2,
Figure 2-3.
Figure 24.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 1-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17,
Figure 2-18.
Figure 2-19.

Hardware Cost Trends.

Trends in Software Applications.

DoD Embedded Computer Software/Hardware.
Growth in NASA Software Demand.

U.8. Industry Share of World Software Market 1981-1987.
How Well Are We Doing?

Standard Waterfall Life Cycle Model.

Department of Defense Development Model.
Software Engineering Life Cycle

Relative Efforts By Development Stage

Who is Doing Requirements Analysis?

Development Life Cycles

End of the Requirements Phase.

“What Versus How” Dilemma

Kinds of Activities During the Requirements Phase.
Inconsistent Requirements Terminology.

Cost (Effort) to Repair Software in Relationship to Life Cycle Stage.
Cumulative Effects of Error.

Types of Non-Clerical Requirements Errors.

Can We Find Errors?

Discovering a Need for Change.

Errors Found by Automated Tools.

General Characteristics of Application Domains.
Automating a Book Distribution Company.
Automating a Helicopter Landing.

Transporting People from New York to Tokyo in 30 Minutes.
Multiple-Car Elevator System.

Carving the Product Space.

Product Space.

Knowledge Tree for the Elevator.

Partitioning Example.

Abstraction Example 1.

Abstraction Example 2: Airline Reservation System.
Knowledge Structure for Abstraction Example 2.
Analogy for Projection.

Projection Example.

Similarities Between Requirements and Design.
Sample DFD: A Book Company.

Trivial DFD,

Concept of Leveling.

Ward Notations for DFD Extensions.
Corresponding Data Dictionary.

Example of an Entity Relationship Diagram for an Elevator Control System,
Example of a Coad Object.

Example of a Coad Classification Structure.
Example of a Coad Assembly Structure.

xi

&

xii

Figure 1-20.
Figure 1-21.
Figure 1-22,
Figure 1-23.
Figure 1-24.
Figure 2-25.
Figure 2-26.
Figure 2-27.
Figure 2-28.
Figure 2-29.
Figure 2-30.
Figure 2-31,
Figure 2-32.
Figure 2-33.
Figure 2-34,
Figure 2-35.
Figure 2-36.
Figure 2-37.
Figure 2-38.
Figure 2-39.
Figure 2-40.
Figure 241,
Figure 242,
Figure 2-438.
Figure 244.
Figure 245,
Figure 2-46.
Figure 2-4%.
Figure 2-48.
Figure 2-49.
Figure 2-50.
Figure 2-51.
Figure 2-52.
Figure 2-63.
Figure 2-84.
Figure2-55.
Figure 2-56.
Figure 2-57.
Figure 2-58.
Figure 2-69.
Figure 2-6C.
Figure 2-61.
PFigure 2-62.
Figure 2-68.
Figure 2-64.
Figure 2-65.
Figure 2-66.
Figure 2-67.
Figure 2-68.
Figure 2-69.
Figure 2-70.
Figuare 2-71.
Figure 2-72.
Figure 2-73.
Figure 2-74.
Figure 2-75.
Figure 2-76.

LIST OF ILLUSTRATIONS

Example of an Instance Connection in Coad Diagrams.
Example of Services in Coad Diagrams.

Example of Messages in Coad Diagrams.

Sample SRD Data Flow Diagrams.

Integrated Data Flow Diagrams.

Defining the Application Using SRF.

SADT Context Diagram: Array Supply Depot.

SADT Example: Refinement of Army Supply Depot Problem.
Structured Analysis and System Specification.
Structured Analysis.

Removing Nonvalue Added Processes.

Structured English Process Specification.
Representative Structured Analysis Tools.

Hourly Employee Processing DFD.

Example of Problem Statement Language: Hourly Employee Processing.

The Expanded Hourly Employee Processing DFD.

PSL Examples for each Subordinate Node of Hourly Employee Processing

PSL/PSA System Architecture.

LOCS Corporation Organization Chart.

SRD DFDs for LOCS.

Updated Figure 2-39d.

Updated Figure 2-89a.

DFD for LOCS.

Collapsed DFD for LOCS.

Primary LOCS Functions.

ADT Context Diagram: LOCS

SADT First-Level Decomposition: LOCS by Organization.
SADT Second-Level Decomposition: LOCS by Organization.
SADT First-Level Decomposition: LOCS by Function.
SADT Second-Level Decomposition: by Function.

SASS Context Diagram: LOCS.

First-Level Physical DFD; LOCS.

Second-Level Physical DFD: LOCS.

First-Level Logical DFD: LOCS.

Second-Level Logical DFD: LOCS.

Data Dictionary for Physical Decomposition: LOCS.
Data Dictionary for Logical Decomposition: LOCS.
Object Definition for LOCS.

OOA Subject Layer for LOCS

O0A MOdel of LOCS with Attributes and Instance Connections.
Final 004 Model of LOCS.

Four “Perspectives” of the Helicopter Landing Frobien.
Combined Perspectives for Helicopter Landing Probien.
SADT Context Diagram: Pfleeger Pfliers

First Pfleeger Pfliers Analysis Dead End.

Second Pfleeger Pfliers Analysis

Third Pfleeger Pfliers Analysis.

SASS Context Diagram (Current): Pfleeger Pfliers.
First-Level Current DFD: Pfleeger Pfliers.

SASS Context Diagram (New): Pfleeger Pfliers.
First-Level New DFD: Pfleeger Pfliers.

Second-Level New DFD: Pfieeger Pfliers.

Data Dictionary for Current DFD: Pfleeger Pfliers.
Data Dictionary for New DFD: Pfleeger Pfliers.

First Pass at Object Definition for Pfleeger Pfliers.
Refined Object Definition for Pfleeger Pfliers.

Object Definition for Pfleeger Pfliers with Structure.

LIST OF ILLUSTRATIONS

Figore 2-77.
Figure 2-78,
Figure 2-79,
Figure 2-380.
Figure 2-81.
Figure 2-82.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 34.
Figure 3-5.
Figure 8-6.
Figure 3-7.
Figure 3-8,
Figure 5-9.
Figure 3-10.
Figure 3-11
Figure 3-12.
Figure 3-18.
Figure 3-24.
Figure 8-15.
Figure 3-16.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 44,
Figure 4--8.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure ¢-9,
Figure 4-16.
Figure 4-11.
Figure 4-12,
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 418,
Ticure 4-20.
Figure <21,
Figure 4-22,
Figure 4-28.
Figure ¢-24,
Figure 4-25.
Figure 4-26,
Figure 4-27.
Figure 428,
Figure 4-29,
Figure 4-30.
Figure 4-31.
Figure 4-32,
Figure 4-38.
Figure 4-34.
Figure 4-35.

0OO0A Subject Layer for Pfleager Pfliers.

OOA Model for Plleeger Pfliers with Attributes and Instance Connections.
Final QOA Model for Pfleeger Pfliers,

Space Shuttle Problem Analysis.

Projection versus SRD.

Applications versus Techniques.

Example 1: Air Traffic Control Display Formats.
Example I: The Two Modules Being Written.
Example 1: The Erroneous Window Transfer.
Example 2: “Bombing Test-Area” Reatricted Airspace.
Example 2: “Aircraft Carrier” Restricted Airspace.
Traceability Expectations of an SRS.

A Perfect SRS is Imposasible.

DI-MCCR-80025A (SRS) Outline.

A System Decomposition Hierarchy.

SFW-.DID-08 (SRS).

ANSI/IEEE STD-830-1984.

ANSI/IEEE STD-830-1984 Alternative I.

ANSVIEEE STD-830-1984.Alternative II.
ANSVIEEE STD-830-1984.Alternative III,
ANSVIEEE STD-830-1984 Alternative IV.

A-7E SRS OQOutline.

Similarities Between Requirements and Design.

A Simple Application of FSMs.

The Environment and the System Modeled as FSMs.
State Transition Diagram Exmple.

SA/RT Tool State Transition Diagram Notation.

STM for Finite State (Mealy) Machines.

STM for Finite State (Moore) Machines.

Finite State Machine Telephony Example.

Decision Table. .
A Decision Table for an Eievator Door Control,

A Decision Table for an Elevator Door Control,

PDL for an Elevator Door Control.

Conditional Transition Extension for FSMs.

Using the Condition Transition Extension for a Local Telephone Call.
The Superstate Extension to FSMs.

Using the Superstate Extension in Telephony.

The Higher Level Statechart.

Refining States with Incoming Transitions.

Defauk Entry State Example.

Refinement Using the “and” Functior

An Equwwvaten: Conventional STD

Specifying Transitions Dependent on States.

R-net Notation.

An R-net Example.

An RSL Example.

REVS Tools. .
The Requirements Language Processor Architecture.
Simple Stimulus-Response Sequence.

Features in Which They All Start at the Same State.
A More Complex Stimulus-Response Sequence.

A 1Jseful Stimulus Response-Sequence.
Stimulus-Response Sequence Example.

SDL Notation,

An SDL Example.

Asynchronous Processes for a System and Its Environment.

xiv

Figure 4-36.
Figure 4-37.
Figure 4-38.
Figure 4-39.
Figure 4—40.
Figure 4-41.
Figure 4-42.
Figure 4-43.
Figure 444,
Figure 4-45.
Figure 4-46.
Figure 4-47.
Figure 4-48.
Figure 449.
Figure 4-50.
Figure 4-51.
Figure 4-52.
Figure 4-538.
Figure 4-54.
Figure 4-56.
Figure 4-56.
Figure 4-57.
Figure 4-58.
Figure 4-59.
Figure 4-60.
Figure 4-61.
Figure 4-62.
Figure 4-63.
Figure 4-64.
Figure 4-65.
Figure 4-66.
Figure 4-67.
Figure 4-68.
Figure 4-69.
Figure 4-70.
Figure 4-71.
Figure 4-72.
Figure 4-73.
Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5—4.

Figure 5-5.

Figure 5-6.

Figure 65-7,

Figure 5-8.

Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-18.
Figure 5- 14
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 6-1.

Figure 6-2.

Figure 6-3.

LIST OF ILLUSTRATIONS

Sample PAISLey Statements.

A Sample Petri Net.

Token Merging in Petri Nets.

Fan-out in Petri nets.

A Petri Net Sequence Example.

A Simple Petri Net.

Another Simple Petri Net.

A Petri New Example for a Warehouse.

Corporate Inputs and Qutputs.

The LOCS Automated System (First Pass)

The LOCS Automated System (Second Pass).

A Decision Tree for a Modified LOCS.

Initial Statechart for LOCS.

Filling Customer Orders Statechart.

Maintaining Customer Status Statechart.

Maintaining Customer Status DFD.

R-net for a Small Part of LOCS.

Stimulus-response Sequences to Describe the Features of LOCS.
SDL for a Small Part of the External Behavior of LOCS.
The Primary Entities in LOCS.

PAISLey Statements for a Small Part of LOCS.

An STD Showing Gross States of the Helicopter’s Flight.
A Decision Table for Pfleeger Pfliers.

A Decision Tree for Pfleeger Pfliers.

A PDL Example from Pfleeger Pfliers.

A Statechart of a Lot.

A Statechart for Capturing a Lot’s View of a Helicopter.
A Statechart for Capturing a Lot’s View of a Bicycle.

A Statechart for Capturing a Lot’s View of a Package.

A Statechart for a Lot’s View of Weather.

The Horizontal Deviation Sensor Array.

The Horizontal Deviation Subsystem.

An r-net for One Aspect of Pfleeger Pfliers.

SDL Example for One Aspect of Pfleeger Pfliers.
Primary Entities in Pfleeger Pfliers.

Some PAISLey Statements for Pfleeger Pfliers.

Petri Net Applied to Final Approach Control (Alignment Above Landing Pad).
A Comparison of SRS Approaches.

The Software Quality Characteristics Tree.

The Bathtub Curve.

Find the Area of This Shape.

Bebugging Process.

Response-Stimulus Timing Constraint in an FSM.
Another Response-Stimulus Timing Constraint in an FSM.
Stimulus-Response Timing Constraint in an FSM.
Another Stimulus-Response Timing Constraint in an FSM.
Response-Stimulus Timing Constraint in a Statechart.
Timeout Shorthand in Statecharts.

Illustration of Validation Paths in REVS.
Responsge-Stimulus Timing Constraints in Petri Nets.

A Petri Net Showing Execution Times.

A Traditional Menu.

A Traditional Menu with PF Keys.

A Menu Using Bezel Buttons.

MacPaint Screen.

The Software Engineering Life Cycle and Throwaway Prototypes.
The Software Life Cycle and Evolutionary Prototypes.
Software vs. Aerospace Prototypes.

LIST OF ILLUSTRATIONS Xv

Figure 6-4.
Figure 6-5.
Rigure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.

Menu 1: Sample Prototype System.

Menu 2: Sample Prototype System.

Menu3: Sample Prototype System.

Constantly Evolving User Needs.

Software Products Fall Short of Meeting All Current User Needs.
Throwaway Prototyping Approach.

Evolutionary Prototyping Approach.

The USE.IT Functicnal Life Cycle Process.

JSD Process Communication

JSD Process Hierarchy Example.

Data Processing as a Percentage of U.S. Gross National Product.
Trends in Software Supply and Demand.

The SAFE System Sample Input

Software Synthesis Stages.

Foreword

Over the past fifteen years, there has been a great deal of concern about the
high cost of software. On one hand projections show that demand for applica-
tions outstrips our society’s ability to produce them at this time. The software
tools applied to assist users, including programmers, in developing soluticns
are improving only incrementally. On the other hand, the U.S. software
industry is saddled with more than $300 billion worth of ill-structured and
difficult-to-maintain software inventory. As a consequence the cost of main-
tenance in large data processing centers has exceeded 60% of their budgets.
These problems call for improving and automating the software development
process, and while much has been done, analysis and specification of require-
ments remain a relatively untouched area. Yet it is perhaps the most impor-
tant aspect of any large sofiware devejopment project.

Beginning in the mid 1970s, there have been a number of techniques and
systems developed for the purpose of analyzing and defining requirements.
The leading methods include SADT, PSL/PSA, SREM, E-R Data Model, and
Data Flow Diagram a la Yourdon. Numerous studies have been conducied to
analyze and compare these methods, while others have concentrated on using
the techniques/methods. Although propcnents of each methodology suggest
that their method can suitably carry out the entire analysis process, we have
learned that each problem requires a different set of techniques and tools.
Therefore it is very refreshing to read this book by Alan M. Davis. I was
pleasantly surprised by his heavy emphasis on the fundamental issue of
problem solving rather than on techniques or tools. TlLe implicit process model

xvii

xvili FOREWORD
of interactive analysis and specification is very effective and realistic. I
particularly appreciate the notion that a requirement specification binds only
the solution space and sometimes it is necessary to do some design or even
implementation (via prototyping) to determine where the solution bounda:y
lies. This contrasts drastically to some of the pure requirements methodology
of stating only what and not how. For as Davis clearly points out, the Aow of
one level is the what of another level.

In addition to presenting software requirements analysis as a problem-
solving activity, this book has three outstanding features. First of ai! ta:s is
one of the most readable technical books I have encountered. Secondly this
book provides a broad coverage of various methodologies, languages, and tools.
1t also contains a thorough reference list that will benefit anyone interested in
this topic. Finally the book presents numerous exampies throughout to iilus-
trate both problem-solving principles and techniques applied to requirements
analysis. ' .

I consider Software Requirements: Analysis and Specification to be a
significant contribution to the software engineering field and would recom-
mend its use in a university-level software engineering curriculum.

Raymond T. Yeh
Austin, Texas

Preface

This book focuses on the early phases of the software development life cycle.
These early activities are commonly called software requirements analysis or
software requirements specification. 1 have written this book for two audi-
ences—(1) the practicing systems engineer, software analyst, and require-
ments writer; and (2) the advanced student of software engineering who wishes
to receive specialized education in the early phases of the software develop-
ment life cycle.

This book is unigue because it discusses the latest research results from
the requirements arena but at the same time is highly practical. Some authors
on the subjects of requirements, specifications, or analysis stress a particular
technique and then try to convince you to embrace that technique as the
technique to apply to your requirements problem. Some authors present
compilations of other authors’ primary works, which in turn advocate partic-
ular techniques. I, however, will not try to convince you that any particular
technique will always be right. Instead this book will arm you with a thorough
understanding of (1) what you need to accomplish during the requirements
phase, (2) how each of a wide variety of techniques can help you accomplish
some part of that task, (3) how different aspects of your particular application
will strongly suggest using one technique or another, (4) how to compare and
contrast all techniques using some common terminology, and (5) how to find a
technique that will assist you in analyzing your problem and specifying your
product’s requirements instead of one that provides you with yet another
problem (that is, figuring out how to use the technique itself). I believe that a

XX PREFACE

good technique should lend itself to your problem--not insist that you mold
your problem to fit the technique, and this philosophy permeates this book. A
. good friend of mine, the late Professor Donald B. Gillies, once said, “If you
program in Algol long enough, you start to see the entire universe as an Algol
program” [GIL72]. Of course this is true not only of Algol and many other
programming languages but many engineering techniques, including those
used during requirements.

I often hear analysts asking such questions as, “Should I use Structured
Analysis or SREM?", or “Should I use USE.IT or SADT?” It is true that all
four of these are termed “requirements” techniques by their respective inven-
tors (and all are discussed in this book). However the posers of these questions
demonstrate an inherent lack of understanding of the requirements domain
and the same naivete as ssmeone who asks, “Should I wear my black shoes or
my leather gloves today?” There is no trade-off involved; Structured Analysis
and SREM serve two completely different purposes, and USE.IT and SADT
serve two completely different purposes. This book provides a new taxonomy
of requirements-related activities to enable you to ask the right questions and
provide sensible answers to them as well.

After reading this book, you may expect to be able to do the following:

* Given any real-world problem, to organize your ideas to quickly find loose
ends that require further analysis and areas that have been overanalyzed.

* Given any real-world problem, to select a set of requirements techniques,
tools, and/or languages that will aid in analyzing that problem.

v

* Once you thoroughly understand your problem, to formulate and organize
a specification of the solution system’s required external behavior completely,
consistently, and unambiguously.

* To select a set of requirements techniques, tools, and/or languages that
could be used to augment your specification of external behavior to help
alleviate inconsistencies, incompletenesses, and ambiguities.

* Given a document defining software requirements for a system, to deter-
mine where it is overspecified, underspecified, inconsistent, ambiguous, or
incomplete.l

* When presented with “yet another (new) requirements technique,” to
determine (1) how it relates to other techniques and (2) whether it is applicable
to your individual problem.

'1t is interesting to note that there are no hard and fast rules for this determination. As
you will see in reading this book, the correct level of these attributes varies dramatically with the
stage of development. For example, a document whose purpose is to define needs and invite
potential developers to bid competitively to satisfy those needs must be much more open ended
than one v-hose purpose is to define the to- be-built system’s external behavior just prior to software
design.

PREFACE xXi

Techniques that are presented in this book are followed by case studies
showing how the technique can be applied to aspects of three real problems.
The same three problems are used as case studies throughout the book to help
you compare and contrast the techniques. The three problems were deliber-
ately selected to represent three very different application domains:

Problem Application Attributes
1. Automation of a book Data intensive; some aspects highly
distribution company human interactive; other aspects highly batch;
multiple simultaneous actions
2. Automation of helicopter landing Hardware control intensive; synchrony
intensive; time sensitive; nondeterministic
3. Transportation of people from A very difficult problem?

New York to Tokyo in 30 minutes

Clearly no problem is entirely batch, entirely difficult, or entirely data inten-
sive. Every problem has a bit of each of these attributes. The important thing
to remember is to employ a technique that makes the difficult parts easier.
Therefore when faced with a particular problem, first determine what the most
difficult parts are, then find the problem in the preceding list that is most
similar to yours, and employ techniques most suitable to that problem.

This book is organized into seven chapters plus an extensive annotated
bibliography.

Chapter 1, the Introduction, sets the stage by (1) describing where the
software industry is today, (2) motivating the tremendous need for improved
software engineering techniques, (3) showing where requirements analysis and
specification fit into the total software development life cycle, (4) defining precisely
what requirements are. (and are not), (5) explaining fundamental differences
between problem analysis, and product description, and (6) providing conclusive
evidence that failure to detect requirements defects is a major cause of skyrocket-
ing software costs. The chapter concludes with a thorough discussion of software
applications in general and the three case studies used throughout the book.

In Chapter 1 we learned that there are two fundamentally different things
being done during the requirements phase—problem analysis and product de-
scription. Chapter 2 explores the former topic in depth, and Chapters 3-5 explore
the latter. The bulk of the second chapter describes, compares, contrasts, and

*Selecting a very difficult problem as an example in this book has its advantages and its
disadvantages. The primary advantage is to help the reader understand how to approach such a
problem. The greatest disadvantage is that if this is truly a difficult problem, we will not solve it
and in fact should make little headway in solving it (or it would have already been partially solved:.
Unfortunately this lack of progress may lead some readers to believe that the techniques employed
are not useful. The correct conclusion is that solving a reslly difficult problem is not easy: You
simply chip away at small pieces, brainstorm a lot, and hopefully solve it. As Turski [TURS80] said,
“To every hard problem, there is a simple solution, and it’s wrong.”

xxii PREFACE

applies a variety of problem analysis techniques. However prior to that discussion,
fundamental principles underlying problem analysis techniques are described.
The chapter concludes with examples of applying each of the techniques from the
chapter to the three case studies described at the end of Chapter 1.

Chapter 3 introduces the subject of how to write or evaluate a document
(that is, the software requirements specifications—SRS) that specifies the exter-
nal behavior of a software product. A list is provided of all attributes that a
“perfect” SRS should exhibit (realizing of course that no SRS can ever be perfect!).
Each of these attributes is defined, and many examples from actual SRSs are
given to demonstrate each attribute. The chapter concludes with sample outlines
for SRSs that can be used as checklists for the novice SRS writer.

In Chapter 3 we learned that there are two types of requirements that
belong in an SRS—behavioral and nonbehavioral. Chapter 4 explores the
former category of requirements (Chapter 5 explores the latter). The bulk of
this chapter describes, compares, contrasts, and applies a variety of techniques
that can be used to describe the external behavior of software. Like Chapter
2, Chapter 4 concludes with examples of applying each of the SRS techniques
described in this chapter to the same three case studies.

In addition to describing external functional behavior, a properly written
SRS also describes the “ilities” of the software. Namely, it describes how
adaptable, how maintainable, how reliable, etc. the software should be. Chap-
ter 5 defines many of the attributes of a software product that must be
addressed in the SRS to ensure that the as-built product satisfies real needs.
Guidance and examples are provided to help you (1) decide which “ilities”
should be emphasized in your particular application and (2) see how to specify
the product traits in as unambiguous a manner as possible.

Prototyping has been used in engineering disciplines for years but only
recently received attention in software engineering. There are two schools of
prototyping during the requirements phase—throwaway and evolutionary.
Proponents of both schools call what they do simply “prototyping;” rarely is a
distinction made in practice. Unfortunately, if you build either type of proto-
type expecting to achieve results available from the other, you will be grossly
disappointed. Chapter 6 thoroughly describes the preceding two types of
requirements and explains their respective impact on the requirements pro-
cess, the software development life cycle, productivity, and product success.

Chapter 7 summarizes key ideas presented in Chapters 1-6, explains
where the requirements field is going, and where it is likely to be in the next
fifteen to twenty years.

The Glossary defines terms used with special meanings in the require-
ments domain.

The annotated Bibliography offers a compilation of approximately 600
published articles, books, and reports on the subject of requirements. Many
of them are described in a short synopsis.

Satl <

1 7 .

PREFACE xxiil

Depending on how you wish to use the book, you may want to read it in
a number of different ways:

If you are a software practitioner who wants to learn about requirements
and the types of techniques, tools, and languages available, I suggest you read
the entire book. If you have a particular problem and do not know where to
turn for advice on how to analyze it, I suggest you read Chapters 1, 2, and 6
only. If you have been asked to write an SRS for a product to be built by your
own organization, you should read Chapters 1, 3-6.

If you have been asked to review an existing or proposed SRS, Chapters
1, 3, 4, and 5 can help you.

If you are using this book ab a reference to help you find an applicable
technique, tool, or language, read Sections 1.1 and 1.2 to gain an appreciation
for the difference between problem analysis and writing an SRS—then browse
through Chapters 2 and 4 to find appropriate approaches.

Notes to the Teacher

If you are using this book as a text for a graduate or an advanced undergrad-
uate-level course, let me indicate how I organize the course when I teach it:

Textbook
Topic References Activity Hours"

Administrative introduction N/A Lecture/discussion 12
Introduction

Software life cycle 11 Lecture/discussion 0.7

What are requirements? 1.2 Lecture/discussion 33
Exercise 1 (SRS evaluation) 4 Student team exercise 2.8
Introduction (continued)

Why are requirements so important? 1.3 Lecture/discussion 08

Taxonomy of applications 14&15 Lecture/discussion 0.5
Problem analysis 2 Lecture/discussion 8.0
Exercise 2 (problem analysis) 2 Group participation 4.0
The SRS 3 Lecture/discussion 23
Specifying behavioral requirements 4 Lecture/discussion 4.0
Exercise 3 (SRS evaluation) 4 Student team exercise 4.0
Specifying nonbehavioral

requirements 5 Lecture/discussion 4.0
Requirements prototyping 8 Lecture/discussion 12
Summary 7 Lecture/discussion 1.0
Exam review N/A Discussion 2.5
Exam N/A Exam 2.7

‘Total hours 43.0

®Actual class contact time.

xxiv PREFACE

Exercises 1 and 3 represent before-the-course and after-the-course exer-
cises on how to recognize inadequacies in an SRS. In both cases, I distribute
copies of actual SRSs, then divide the class into teams of three to five each to
assess independently the quality of the SRS. Usually I also give each team a
unique role to play: :

1. Design team
Wants to be able to build software based on SRS

Disdains overspecification

2. System testing team
Wants to be able to test that the software product meets its
requirements
Can not tolerate ambiguity

3. System user/customer team
Wants to be sure product is worth paying for
Wants an understandable document
Can not tolerate underspecification

4. Requirements Consultants, Inc., team
Wants to see formality
Intolerant of ambiguity

During Exercise 3, I usually walk from team to team to assist each in
playing its role realistically. This is followed by formal 15-minute presenta-
tions by each team to the entire class. Because each team has a unique
position, much controversy is generated concerning the appropriateness of the
SRS. In both exercises, students learn how to recognize inadequacies in an
SRS. In Exercise 3, they also learn that there are no clear-cut answers to the
question, “What is a perfect SRS?”

In Exercise 2, the assembled class simuilates the brainstorming that goes
on during a typical problem analysis session. I serve as moderator and provide
little added value other than as a poser of key questions when the students
lose momentum. In this way students learn how to use problem analysis
techniques to organize ideas.

REFERENCES

[GIL72] Gillies, D.B. Private communication. Lawrence, Kans., January
1972. '

[TURS80] Turski, V. Stated orally at IFIPS Congress 1980, Tokyo. October
1980.

PREFACE XY

ACKNOWLEDGMENTS

Only one author’s name appears on the cover of this book, but I did not write
it alene. Dozens of collegues, friends, and relatives provided assistance of all
kinds, and without that assistance, this book would never have existed.

Dr. Edward Bersoff, president of BTG, Inc., deserves the most thanks.
His moral and financial support, technical ideas, friendship, and high stan-
dards of integrity have been inspirational to me and crucial to the creation of
this book.

During the ten-year period when the ideas expressed in this book were
developed, I had the opportunity of discussing requirements-related issues
with many people. Among them are a few individuals who stand out for having
provided me with considerable insight into the vast challenges assoriated with
analyzing problems and writing software requirements specifications: Dr. Ed.
Bersoff of BTG, Inc.; Peter Coad of Object International, Inc.; Ed Comer of
Software Productivity Solutions, Inc.; Dr. B. Dasarathy of Concurrent Com-
puters; Bruce Gregor of RS Data Systems Inc. the Software Productivity
Consortium; Tom Miller, formerly with GTE Laboratories; Dr. Tom Rauscher
of Xerox Corporation; and Dr. Ray Yeh of International Systems Corporation.
Dr. Jim Sherrill and the U.S. Army systems automation officers in the
“Defining Software Requirements” course at the Computer Science School in
Ft. Benjamin Harrison, Indiana, from March 1986 t¢ December 1987 also
deserve special recognition for having unknowingly servad s a test bed for
many of the ideas in this book. The feedback that they suppiied about my
successes and failures with teaching this materiai was used to fine tune the
instructional methods used in that course as well as in this hook Early
reviewers of this book, namely, Dr. Bob Glass of the Journal of Systems and
Software and Bill Cureton of Sun Microsystems, Inc., provided much help with
the rough spots in early manuscripts. Bruce Gregor was invaluable in devel-
oping the Pfleeger Pfliers case study. ,

A number of people played a key role in creating this book, although they
did not realize it at the time. Three individuals in my early professionaf life
gave me inspiration, taught me the meaning of self-confidence, and shagped the
very nature of how I think today. These people, Dick Dworak, the late Dr. Don
Gillies, and Dr. Tom Wilcox, probably have more to do with who [am today
professionally than any others.

The Prentice Hall editor Paul Becker was helpfu! in providing sound
advice about writing this book. He gave me just the right number of reminders
to make sure I was always progressing and on the right track. In addition to
being a trusted friend, Ms. Marilynn Bersoff deserves my praise and thanks
for maintaining her incredible level of quality standards ir: the physical
production of the text and figures that comprise this work. Ms. Biicen Bates
and Interactive Development Environments, Inc., provided access to Sofsware

