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Preface

Integral transforms are among the main mathematical methods for the
solution of equations describing physical systems, because, quite generally,
the coupling between the elements which constitute such a system—these can
be the mass points in a finite spring lattice or the continuum of a diffysive or
elastic medium—prevents a straightforward “‘single-particle” solution. By
describing the same system in an appropriate reference frame, one can often
bring about a mathematical uncoupling of the equations in such a way that
the solution becomes that of noninteracting constituents. The *“tilt” in the
reference frame is a finite or integral transform, according to whether the
system has a finite or infinite number of elements. The types of coupling which
yield to the integral transform method include diffusive and elastic interactions
in “classical”” systems as well as the more common quantum-mechanical
potentials.

The purpose of this volume is to present an orderly exposition of the
theory and some of the applications of the finite and integral transforms
associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss,
Bargmann, and several others in the same vein.

The volume is divided into four parts dealing, respectively, with finite,
‘series, integral, and canonical transforms. They are intended to serve as
independent units. The reader is assumed to have greater mathematical
sophistication in the later parts, though.

Part I, which deals with finite transforms, covers the field of complex
vector analysis with emphasis on particular linear operators, their eigen-
vectors, and their eigenvalues. Finite transforms apply naturally to lattice

structures such as (finite) crystals, electric networks, and finite signal

sets.
Fourier and Bessel series are treated in Part II. The basic theorems
are proven here in the customary classical analysis framework, but when

vii



viii Preface

introducing the Dirac 8, we do not hesitate in translating the vector space con-
cepts from their finite-dimensional counterparts, aiming for the rigor of most

-mathematical physics developments. The appropriate warning signs are

placed where one is bound, nevertheless, to be led astray by finite-dimensional
analogues. Applications include diffusive and elastic media of finite extent
and infinite lattices.

Fourier transforms occupy the major portion of Part III. After their
introduction and the study of their main properties, we turn to the treatment
of certain special functions which have close connection with Fourier trans- .
forms and which are, moreover, of considerable physical interest: the attrac-
tive and repulsive quantum oscillator wave functions and coherent states.

"Other integral transforms (Laplace, Mellin, Hankel, etc.) related to the

Fourier transform and applications occupy the rest of this part.

~ “Canonical transforms” is the name of a parametrized continuum of
transforms which include, as particular cases, most of the integral transforms
of Part III. They also include Bargmann transforms, a rather modern tool
used for the description of shell-model nuclear physics and second-quantized
boson field theories. In the presentation given in Part IV, we are adapting
recent research material such as canonical transformations in quantum
mechanics, hyperdiffetential operator realizations for the transforms, and
similarity groups for a class of differential equations. We do not explicitly
use Lie group theory, although the applications we present in the study of the
diffusion and related Schrodmgcr equations should cater to the taste of the
connoisseur.

On the whole, the pace and tone of the text have been set by the balance
of intuition and rigor as practiced in applied mathematics with the aim that
the contents should be useful for senior undergraduate and graduate students
in the scientific and technical fields. Each part contains a flux diagram
showing the logical concatenation of the sections so as to facilitate their use
in a variety of courses. The graduate student or research worker may be
interested in some particular sections such as the fast Fourier transform
computer algorithm, the Gibbs phenomenon, causality, or oscillator wave
functions. These are subjects which have not been commonly included under
the same cover. Part IV, moreover, may spur his or her interest in new
directions. We have tried to. give an adequate bibliography whenever our
account of an area had to stop for reasons of specialization or space.
References are cited by author’s name and year of publication, and they are
listed alphabetically at the end of the book. A generous number of figures
and some . tables should enable the reader to browse easily. New literals are
defined by ‘“="'; thus f= 4 means f is defined as the expression 4. Vectors
and unargumented functions are denoted by lowercase boldface type and
matrices by uppercase boldface. Operators appear in “double” type, e.g.,
Q, P, and sets in script, e.g., #, €. A symbol list is included at the end.
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Exercises are used mainly to suggest alternative proofs, extensions to the
text material, or cross references, usually providing the answers as well as
further comments. They are meant to be read at least cursorily as part of the
text. Equations are numbered by chapter.

I would like to express my gratitude to Professor Tomds Garza for his
encouragement and support of this project; to my colleagues Drs. Charles P.
Boyer, Jorge Ize, and Antonmaria Minzoni among many others at IIMAS,
Instituto de Fisica, and Facultad de Ciencias, for their critical comments on
the manuscript; and to my students for bearing with the first versions of the
material in this volume. The graphics were programmed by the author on
the facilities of the Centro de Servicios y Cémputo and plotted at the Instituto
de Ingenieria, UNAM. Special acknowledgment is due to Miss Alicia
Vézquez for her fine secretarial work despite many difficulties.

Ciudad Universitaria, México D.F. Kurt Bernardo; Wolf
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Part I

Finite-Dimensional
Vector Spaces
and the Fourier Transform

In this part we develop the mathematical framework of finite-dimensional
Fourier transforms and give the basics of two fields where it has found
fruitful application: in the analysis of coupled systems ar d in communication
theory and technology.

Chapter 1 deals with complex vector analysis in N Jimensions and leads
rather quickly to the tools of Fourier analysis: unitary transformations and
self-adjoint operators. The uncoupling of lattices rearesenting one-dimen-
sional crystals and electric RLC networks is undertaken in Chapter 2. We
examine in detail the fundamental solutions, normal modes, and traveling
waves for first-neighbor interactions in simple crystal lattices and extend
these to farther-neighbor, molecular, and diatomic crystals. The Fourier
formalism is also used to describe the analytical mechanics of these systems:
phase space, energy, evolution operators, and other conservation laws.
Chapter 3 introduces convolution and correlation, sketching their use in
filtering, windowing, and modulation of signals and their detection in the
presence of background noise. The workings of the fast Fourier transform
(’"FT) computation algorithm are given in Section 3.3, Finally, in Section
3.4, some properties of Fourier series and integral transforms (Parts 11 and
III) are put in the form of corresponding properties of the finite Fourier
transform on vector spaces whose dimension grows without bound.

Chapters 2 and 3 are independent of each other and can be chosen
according to the reader’s interest. With the first choice, Sections 1.6 and 1.7
will be particularly needed. The understanding of Chapter 3, on the other
hand, does not require basically more than Sections 1.1-1.4. Before going

1
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2 Part I - Finite-Dimensional Fourier Transform

to the following parts in this text, the reader may find Section 3.4 useful.
Table 1.1, which gives the main properties of the finite Fourier transform, is
placed at the end of Chapter 1.

Chapter 2 \

[ }
20— 22} 23}—+[24] |25 }—+ 26|

Chapter 3

r
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I

Concepts from Complex
Vector Analysis and the
Fourier Transform

In this chapter we present the basic properties of complex vector spaces and
the Fourier transform. Sections 1.1 and 1.2 prepare the subject through the
standard definitions of linear independence, bases, coordinates, inner
product, and norm. In Section 1.3 we introduce linear transformations in
vector spaces, emphasizing the conceptual difference between passive and
active ones: the former refer to changes in reference coordinates, while the
latter imply a “physical’’ process actually transforming the points of the
space. Permutations of reference axes and the Fourier transformation are
prime examples of coordinate changes (Section 1.4), while the second-
difference operator in particular and self-adjoint operators in general
(Section 1.5) will be important in applications. We give, in Section 1.6, the
elements of invariance group considerations for a finite N-point lattice.
Finally, in Section 1.7 we examine the axes of a transformation and develop
the properties of self-adjoint and unitary operators.

If the reader so wishes, he can proceed from Section 1.4 directly to
Chapter 3 for applications in communication and the fast Fourier transform
algorithm. The rest of the sections are needed, however, for the treatment of
coupled systems in Chapter 2.

1.1. N-Dimensional Complex Vector Spaces

The elements of real vector analysis are surely familiar to the reader, so
the material in this section will serve mainly to fix notation and to enlarge
slightly the concepts of this analysis to the field € of complex numbers.

3



4 Part I - Finite-Dimensional Fourier Transform [Sec. 1.1

1.1.1. Axioms

Let ¢y, ¢, ... be complex numbers, elements of &, and let f,,f,, ... be
the elements of a set ¥" called vectors and denoted by boldface letters. We
shall aliow for two operations within ¥":

(a) To every pair f; and f; in ¥/ there is an associated element f3 in ¥,
called the sum of the pair: f; = f, + f,.

(b) To every fe ¥ (“f element of ¥***) and every c € €, there is an
associated element ¢f in ¥, referred to as the product of f by c.

With respect to the sum, ¥" must satisfy the following:

(al) Commutativity: £, + f = f3 + £,

(3.2) ASSOCiaﬁvity.' (fl + fg) + fs = f1 + (fg + fs),

(a3) ¥ must contain a zero vector 0 such that f + 0 = f for all fe ¥]
(a4) For every f € ¥, there exists a (—f) € ¥ such that f + (—f) = 0.

With respect to the product it is required that ¥ satisfy

®D 1.f=f,
(b2) cifcaf) = (crca)f.

Finally, the two operations are to intertwine distributively, i.e.,

(1) olfy + ) = oy + cfs,
(62) (61 + CQ)f = clf + CQf.

The last requirement relates the sum in € with the sum in 77 We use the same
symbol “+ for both. Immediate consequences of these axioms are Of = 0
and (- Df = —f.

1.1.2. Linear Independence

Except for allowing the numbers ¢;, ¢, ... to be complex, the main
concepts from ordinary vector analysis remain unchanged: A set of (nonzero)
vectors f;, £z, . . ., fy is said to be linearly independent when

N

Z i =0wc,=0, n=12. N 1.y

nel -
7

If the implication to the right does not hold, the set of vectors is said to be
linearly dependent. A complex vector space ¥ is said to be N-dimensional
when it is possible to find at most N linearly independent vectors. We affix. -
N to ¥ as a superscript: ¥'¥. Let {e,}"., = {e,, €5, ..., &y} be a maximal ’
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set of linearly independent vectors, called a basis for ¥¥. We can then express
any f € 7'V as a linear combination of the basis vectors as

f= iﬂ,z,‘, - (1.2)

n=l
where f, € € is the nth coordinate of f with respect to the basis {e,}¥.,. If f
has coordinates {f,}3., and g coordinates {g,}¥.,, then the coordinates of a
vector h = aof + bg will be h, = af, + bg, for n = 1,2,..., N, as implied
by (1.1) and the linear independence of the basis vectors. The vector 0 has
all its coordinates zero.

1.1.3. Canonical Representation

Any two N-dimensional vector spaces are isomorphic, as we need only
establish a one-to-one correspondence between the basis vectors. A most
convenient realization of {e,}¥.., is given through the canonical column-vector
representation

1 0 0 Si
0 1 0 Ja

81 = ? . 32 = (:) 3 e vy GN = : N i.C., f= -f:;!
0 0 0 St
0 0 1 Ju

(1.3)
Throughout Part I, we shall consider finite-dimensional complex vector
spaces.

Exercise 1.1. Map the complex vector space ¥ ¥ onto a 2N-dimensional real
vector space (i.e., only real numbers allowed). You can number the basis vectors
in the latter ase,® ==¢,and e}y, , == ie,,n = 1,2,..., N. (Any other choice ?) How
.do the coordinates of a vector f € ¥V relate to the coordinates of the correspond-
ing vector in the real space?

For economy of notation we shalil henceforth indicate summations as in
(1.2) by 3,, the range of the index being implied by the context. Double
sums will appear as 3, ., etc. If any ambxgumes should arise, we shall
revert to the full summation symbol.

1.2. Inner Product and Norm in ¥V

In this section we shall generalize the inner (or ‘“‘scalar’”) product and
norm of ordinary vector analysis to corresponding concepts in complex
vector spaces.
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1.2.1. Inner Product

To every ordered pair of vectors f, g in ¥, we associate a complex
number (f, g), their inner product. It has the properties of being /inear in the
second argument, i.e.,

(1, a18: + c:83) = of, gl)‘ + co(f, g3), (1.4)
and antilinear in the first,
(clfl + c2f25 g) = cl*(fla g) + C;(rz, g)’ (1'5)

where the asterisk denotes complex conjugation. Such an inner product is
thus a sesquilinear (‘1% linear”) operation: ¥V x ¥V — € We shall assume
that the inner product is positive; that is, (f, f) > O for every f 3 0.

1.2.2. Orthonormal Bases

Two vectors whose inner product is zero are said to be orthogonal. A
basis such that its vectors satisfy

1 ifn=m,

0 ifntm 1.6

(ens &m) = Su = {
is said to be an orthonormal basis. It can easily be shown as in real vector
analysis, by the Schmidt construction, that one can always find an ortho-
normal basis for ¥"¥. Conversely, we can define the inner product by demand-
ing (1.6) for a given basis and then extend the definition through (1.4) and
(1.5) to the whole space ¥¥. For two arbitrary vectors f and g written in
terms of the basis, we have

(g = (Zf,,sn, > f,..s.,) [from (1.2)]
=> g,,.(z Fias e,,,) [from (1.4)]
2. S gulens €n) [from (1.5)]

= Z fEg,. [from (1.6)] (1.7)

It is now easy to verify that
(f’ f) =0, £H)=0<«f=0, (1.8)
£, g = (0" (1.9

[In fact, Egs. (1.4), (1.8), and (1.9) are sometimes used to define the inner
product in a vector space: the two sets of axioms are equivalent whenever
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-an orthonormal basis exists. This is the case for finite N-dimensional spaces
but not always when N is infinite. In the latter, the definition (1.4)—(1.8)-(1.9)
is used.]

1.2.3. Coordinates

The nth coordinate of a vector f in the orthonormal basis {e,}h~; is
easily recovered from f itself through the inner product: Performing the
inner product of a fixed e, with Eq. (1.2), we find

Em D) = (oms 2, fo8n) = 2, folem &) = fo (1.10)

“Hence, we can write

f=2 ee, 1) - (@1.11)

1.2.4. Schwartz Inequality

Two vectors f, and f; were said to be orthogonal if (f;, fz) = 0. On the
other hand, two vectors g, and g, are parallel if g, = cgs, ¢ € ¥, in which case

(81, 82) = ¢*(83, 82) = ¢~ (g1, §1) = [c*c™ (81, B )Bar BN  (1.12)

where, note, |c*c~!| = 1. For |(f, g)|, zero is a lower bound, while, in the
event f and g are parallel, |(f, g)| = [(f, fXg, @]*'>. These are the extreme
values, as stated in the well-known Schwartz inequality:

|5, @)1 < (, ) 8- | (1.13)

We can prove (1.13) as follows. Consider the vector f — cg. Then, because

of (1.8), [
0<( - & - =1 —clg— e+ |d* e (119

Now clhoose (for g % ?)
¢ = (f, 2)"/(g, 8)- (1.15)

Replacement ia (1.14) and a rearrangement of terms yield (1.13).

13

1.2.5. Norm

The norm (or length) of a vector fe ¥ is defined as

If]l := @& D2 1.16)
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It is a mapping from ¥¥ onto &+ (the nonnegative halfline), having the
properties

It} =0, |Jfl=0=f=0, .17
el = lel i, (1.18)
It +-g| < €] + [el. , (1.19)

Equations (1.17) and (1.18) are easily proven from (1.8) and (1.4)-(1.5),
while Eq. (1.19) is the triangle inequality, which states, quite geometrically,
that the length of the sum of two vectors cannot exceed the sum of the
lengths of the vectors. It can be proven from (1.14), setting ¢ = — 1, that

0 < If +gf* = If|* + 2Re(t, ) + [el?
<II*+ 2@ ) + lgl®  (rom Rez < |2])
< 117 + 2160 lgl + lgl*  ffrom (113)] (120

The square root of the second and last terms yields Eq. (1.19).

Exercise 1.2, From (1.14) show that
If —el'= [ If] — lsl|. (1.21)

This is another form of the triangle inequality.

We have obtained the properties of the norm, Egs. (J.17)-(1.19), as
consequences of the definition and properties of the inner product. The
abstract definition of a norm, however, is that of a mapping from ¥ onto
&+, with properties (1.17)~(1.19). It is a weaker requirement than that of an
inner product and quite independent of it. The definition (1.16) only repre-
sents a particular kind of norm. Again, in infinite-dimensional spaces one
may define a norm but have no inner product.

Exercise 1.3. Prove the polarization identity
®, g = ¥f + gl* — [f — gl + 3(|f — igl® ~ |f + igl*). (@1.22)
Note that this identity hinges on the validity of (1.16). It cannot be used to define

an inner product from a norm.

Exercise 1.4. Define the complex angle between two vectors by
cos © = (f, g)/|f|-lgl, © =6+ ib,. (1.23)

Show that this restricts © to a region |sinh ;] < [sin fg] < 1.



