The Enzymes

VOLUME X

PROTEIN SYNTHESIS

DNA SYNTHESIS AND REPAIR

RNA SYNTHESIS

ENERGY-LINKED ATPases

SYNTHETASES

Third Edition

THE ENZYMES

Edited by PAUL D. BOYER

Molecular Biology Institute and Department of Chemistry University of California Los Angeles, California

Volume X

PROTEIN SYNTHESIS

DNA SYNTHESIS AND REPAIR

RNA SYNTHESIS

ENERGY-LINKED ATPases

SYNTHETASES

THIRD EDITION

COPYRIGHT © 1974, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

Library of Congress Cataloging in Publication Data Main entry under title:

The Enzymes.

Includes bibliographical references.

CONTENTS: v. 2. Kin
mechanism.—v. 3. Hydrolysis: peptide bonds.

and mechanism.-v. 3.

[etc.]
1. Enzymes. I. Boyer, Paul D., ed.
OP601.E523 574.1'925 75-117107

Kinetics

QP601.E523 574.1'925 ISBN 0-12-122710-3 *

PRINTED IN THE UNITED STATES OF AMERICA

List of Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

- ADOLPH ABRAMS (395), Department of Biochemistry, University of Colorado School of Medicine, Denver, Colorado
- LASZLO BERES (53), Department of Biochemistry and Biophysics, University of Connecticut, Storrs, Connecticut
- F. J. BOLLUM (145), Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky
- WILLIAM A. BRIDGER (581), Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- C. T. CASKEY (87), Department of Medicine, Baylor College of Medicine, Texas Medical Center, Houston, Texas
- MICHAEL J. CHAMBERLIN (333), Department of Biochemistry, University of California, Berkeley, California
- PIERRE CHAMBON (261), Institut de Chimie Biologique, Faculté de Médecine de Strasbourg, Strasbourg, France
- R. A. COOPER (631), Department of Biochemistry, University of Leicester, Leicester, England
- A. GINSBURG (755), Laboratory of Biochemistry, National Heart and Lung Institute, National Institutes of Health, Bethesda, Maryland
- WILHELM HASSELBACH (431), Abteilung Physiologie, Max-Planck-Institut für Medizinische Forschung, Heidelberg, Germany
- ARTHUR KORNBERG (119), Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- H. L. KORNBERG (631), Department of Biochemistry, University of Leicester, Leicester, England

- THOMAS KORNBERG (119), Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- D. E. KOSHLAND, JR. (539), Department of Biochemistry, University of California, Berkeley, California
- I. R. LEHMAN (237), Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- A. LEVITZKI (539), Department of Biochemistry, University of California, Berkeley, California
- LAWRENCE A. LOEB (173), The Institute for Cancer Research, Philadelphia, Pennsylvania
- JOHN C. LONDESBOROUGH (469), Laboratories of the Finnish State Monopoly (ALKO), Helsinki, Finland
- JEAN LUCAS-LENARD (53), Department of Biochemistry and Biophysics, University of Connecticut, Storrs, Connecticut
- RAJARSHI MAZUMDER (1), Department of Biochemistry, New York University School of Medicine, New York, New York
- ALTON MEISTER (561, 671, 699), Department of Biochemistry, Cornell University Medical College, New York, New York
- SATOSHI MIZUTANI (211), McArdle Laboratory for Cancer Research, The University of Wisconsin, Madison, Wisconsin
- SEVERO OCHOA (1), Department of Biochemistry, New York University School of Medicine, New York, New York
- HARRY D. PECK, JR. (651), Department of Biochemistry, Boyd Graduate Studies Research Center, The University of Georgia, Athens, Georgia
- HARVEY S. PENEFSKY (375), Department of Biochemistry, The Public Health Research Institute of the City of New York, New York, New York
- PAUL R. SCHIMMEL (489), Departments of Biology and Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
- JEFFREY B. SMITH (395), Department of Biochemistry, University of Colorado Medical School, Denver, Colorado
- DIETER SOLL (489), Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut

- E. R. STADTMAN (755), Laboratory of Biochemistry, National Heart and Lung Institute, National Institutes of Health, Bethesda, Maryland
- ROBERT L. SWITZER (607), Department of Biochemistry, University of Illinois, Urbana, Illinois
- W. P. TATE (87), Department of Medicine, Baylor College of Medicine, Texas Medical Center, Houston, Texas
- HOWARD M. TEMIN (211), McArdle Laboratory for Cancer Research, The University of Wisconsin, Madison, Wisconsin.
- LESLIE T. WEBSTER, JR. (469), Department of Pharmacology, Northwestern University Medical School, Chicago, Illinois

Preface

"DNA," "RNA," and "protein" have become part of the intellectual language of high school biology students and of better educated citizens generally. These substances are recognized as the core of molecular biology—they are the transmitters and effectors of genetic information. The remarkable advance in knowledge related to these substances has been accompanied by, and indeed has been made possible by, a growing body of information about the enzymes associated with them. Many things can now be said at a molecular level about the enzymes that are concerned with the synthesis of DNA, RNA, and proteins and about their metabolic transformations. Most of this volume serves to give such information, presented by outstanding researchers in the field.

The balance of the volume presents enzymology of another vital substance—ATP. ATP is almost as familiar to the public as DNA and RNA, and perhaps even more familiar to the biochemist. The discussion of energy-linked ATPases includes those of mitochondria and chloroplasts and the membrane ATPases concerned with active transport. Considerations of ATP cleavage accompanying muscle contraction and of ATP synthesis by oxidative and photosynthetic phosphorylation are beyond the scope of this volume and thus are not included. Satisfying descriptions of these processes at a molecular level are yet to be attained.

The Editor and Advisory Board are again gratified that nearly all of the authors of this volume are our first choices. Beyond making these excellent choices, I want to thank the Advisory Board for their help in planning the volume and assisting in other ways. Thanks are also due to the fine work contributed by the professional staff of Academic Press.

PAUL D. BOYER

Contents of Other Volumes

Volume I: Structure and Control

- X-Ray Crystallography and Enzyme Structure

 David Eisenberg
- Chemical Modification by Active-Site-Directed Reagents

 Elliott Shaw
- Chemical Modification as a Probe of Structure and Function

 Louis A. Cohen
- Multienzyme Complexes

 Lester J. Reed and David J. Cox
- Genetic Probes of Enzyme Structure

 Milton J. Schlesinger
- Evolution of Enzymes

 Emil L. Smith
- The Molecular Basis for Enzyme Regulation D. E. Koshland, Jr.
- Mechanisms of Enzyme Regulation in Metabolism E. R. Stadtman
- Enzymes as Control Elements in Metabolic Regulation

 Daniel E. Atkinson
- Author Index—Subject Index

Volume II: Kinetics and Mechanism

Steady State Kinetics
W. W. Cleland

Rapid Reactions and Transient States

Gordon B. Hammes and Paul R. Schimmel

Stereospecificity of Enzymic Reactions G. Popják

Proximity Effects and Ensyme Catalysis

Thomas C. Bruice

Enzymology of Proton Abstraction and Transfer Reactions
Irwin A. Rose

Kinetic Isotope Effects in Enzymic Reactions

J. H. Richards

Schiff Base Intermediates in Enzyme Catalysis

Esmond E. Snell and Samuel J. Di Mari

Some Physical Probes of Enzyme Structure in Solution Serge N. Timasheff

Metals in Enzyme Catalysis

Albert S. Mildvan

Author Index—Subject Index

Volume III: Hydrolysis: Peptide Bonds

Carboxypeptidase A

Jean A. Hartsuck and William N. Lipscomb

Carboxypeptidase B

J. E. Folk

Leucine Aminopeptidase and Other N-Terminal Exopeptidases Robert J. DeLange and Emil L. Smith

Pepsin

Joseph S. Fruton

Chymotrypsinogen: X-Ray Structure J. Kraut

The Structure of Chymotrypsin D. M. Blow

Chymotrypsin—Chemical Properties and Catalysis George P. Hess

Trypsin

B. Keil

Thrombin and Prothrombin Staffan Magnusson

Pancreatic Elastase B. S. Hartley and D. M. Shotton

Protein Proteinase Inhibitors—Molecular Aspects Michael Laskowski, Jr., and Robert W. Sealock

Cathepsins and Kinin-Forming and -Destroying Enzymes Lowell M. Greenbaum

Papain, X-Ray Structure J. Drenth, J. N. Jansonius, R. Koekoek, and B. G. Wolthers

Papain and Other Plant Sulfhydryl Proteolytic Enzymes A. N. Glazer and Emil L. Smith

Subtilisin: X-Ray Structure

J. Kraut

Subtilisins: Primary Structure, Chemical and Physical Properties Francis S. Markland, Jr., and Emil L. Smith

Streptococcal Proteinase Teh-Yung Liu and S. D. Elliott

The Collagenases Sam Seifter and Elvin Harper

Clostripain

William M. Mitchell and William F. Harrington

Other Bacterial, Mold, and Yeast Proteases

Hiroshi Matsubara and Joseph Feder

Author Index—Subject Index

Volume IV: Hydrolysis: Other C-N Bonds, Phosphate Esters

Ureases

F. J. Reithel

Penicillinase and Other β-Lactamases
Nathan Citri

Purine, Purine Nucleoside, Purine Nucleotide Aminohydrolases
C. L. Zielke and C. H. Suelter

Glutaminase and γ-Glutamyltransferases Standish C. Hartman

L-Asparaginase

John C. Wriston, Jr.

Enzymology of Pyrrolidone Carboxylic Acid Marian Orlowski and Alton Meister

Staphylococcal Nuclease X-Ray Structure
F. Albert Cotton and Edward E. Hazen, Jr.

Staphylococcal Nuclease, Chemical Properties and Catalysis

Christian B. Anfinsen, Pedro Cuatrecasas, and Hiroshi Taniuchi

Microbial Ribonucleases with Special Reference to RNases T₁, T₂, N₁, and U₂ Tsuneko Uchida and Fujio Egami

Bacterial Deoxyribonucleases

I. R. Lehman

Spleen Acid Deoxyribonuclease Giorgio Bernardi

Deoxyribonuclease I

M. Laskowski, Sr.

Venom Exonuclease
M. Laskowski, Sr.

Spleen Acid Exonuclease

Alberto Bernardi and Giorgio Bernardi

Nucleotide Phosphomonoesterases

George I. Drummond and Masanobu Yamamoto

Nucleoside Cyclic Phosphate Diesterases

George I. Drummond and Masanobu Yamamoto

E. coli Alkaline Phosphatase

Ted W. Reid and Irwin B. Wilson

Mammalian Alkaline Phosphatases
H. N. Fernley

Acid Phosphatases

Vincent P. Hollander

Inorganic Pyrophosphatase of Escherichia coli John Josse and Simon C. K. Wong

Yeast and Other Inorganic Pyrophosphatases

Larry G. Butler

Glucose-6-Phosphatase, Hydrolytic and Synthetic Activities Robert C. Nordlie

Fructose-1,6-Diphosphatases
S. Pontremoli and B. L. Horecker

Bovine Pancreatic Ribonuclease

Frederic M. Richards and Harold W. Wyckoff

Author Index—Subject Index

Volume V: Hydrolysis (Sulfate Esters, Carboxyl Esters, Glycosides), Hydration

The Hydrolysis of Sulfate Esters
A. B. Roy

Arylsulfatases

R. G. Nicholls and A. B. Roy

Carboxylic Ester Hydrolases

Klaus Krisch

Phospholipases

Donald J. Hanahan

Acetylcholinesterase

Harry C. Froede and Irwin B. Wilson

Plant and Animal Amylases

John A. Thoma, Joseph E. Spradlin, and Stephen Dygert

Glycogen and Starch Debranching Enzymes

E. Y. C. Lee and W. J. Whelan

Bacterial and Mold Amylases

Toshio Takagi, Hiroko Toda, and Toshizo Isemura

Cellulases

D. R. Whitaker

Yeast and Neurospora Invertases

J. Oliver Lampen

Hyaluronidases

Karl Meyer

Neuraminidases

Alfred Gottschalk and A. S. Bhargava

Phage Lysozyme and Other Lytic Enzymes

Akira Tsugita

Aconitase

Jenny Pickworth Glusker

 β -Hydroxydecanoyl Thioester Dehydrase

Konrad Bloch

Dehydration in Nucleotide-Linked Deoxysugar Synthesis

L. Glaser and H. Zarkowsky

Dehydrations Requiring Vitamin B₁₂ Coenzyme Robert H. Abeles

Enolase

Finn Wold

Fumarase and Crotonase

Robert L. Hill and John W. Teipel

6-Phosphogluconic and Related Dehydrases W. A. Wood

Carbonic Anhydrase

S. Lindskog, L. E. Henderson, K. K. Kannan, A. Liljas, P. O. Nyman, and B. Strandberg

Author Index—Subject Index

Volume VI: Carboxylation and Decarboxylation (Nonoxidative), Isomerization

Pyruvate Carboxylase

Michael C. Scrutton and Murray R. Young

Acyl-CoA Carboxylases

Alfred W. Alberts and P. Roy Vagelos

Transcarboxylase

Harland G. Wood

Formation of Oxalacetate by CO₂ Fixation on Phosphoenolpyruvate Merton F. Utter and Harold M. Kolenbrander

Ribulose-1,5-Diphosphate Carboxylase

Marvin I. Siegel, Marcia Wishnick, and M. Daniel Lane

Ferredoxin-Linked Carboxylation Reactions
Bob B. Buchanan

Amino Acid Decarboxylases

Elizabeth A. Boeker and Esmond E. Snell

Acetoacetate Decarboxylase
Irwin Fridovich

Aldose-Ketose Isomerases

Ernst A. Noltmann

Epimerases

Luis Glaser

Cis-Trans Isomerization
Stanley Seltzer

Phosphomutases

W. J. Ray, Jr., and E. J. Peck, Jr.

Amino Acid Racemases and Epimerases

Elijah Adams

Coenzyme B₁₂-Dependent Mutases Causing Carbon Chain Rearrangements

H. A. Barker

B₁₂ Coenzyme-Dependent Amino Group Migrations Thressa C. Stadtman

Isopentenylpyrophosphate Isomerase

P. W. Holloway

Isomerization in the Visual Cycle

Joram Heller

Δ⁵-3-Ketosteroid Isomerase Paul Talalay and Ann M. Benson

Author Index—Subject Index

Volume VII: Elimination and Addition, Aldol Cleavage and Condensation, Other C—C Cleavage, Phosphorolysis, Hydrolysis (Fats, Glycosides)

Tryptophan Synthetase

Charles Yanofsky and Irving P. Crawford

Pyridoxal-Linked Elimination and Replacement Reactions

Leodis Davis and David E. Metzler

The Enzymic Elimination of Ammonia

Kenneth R. Hanson and Evelyn A. Havir

Argininosuccinases and Adenylosuccinases
Sarah Ratner

Epoxidases

William B. Jakoby and Thorsten A. Fjellstedt

Aldolases

B. L. Horecker, Orestes Tsolas, and C. Y. Lai

Transaldolase

Orestes Tsolas and B. L. Horecker

2-Keto-3-deoxy-6-phosphogluconic and Related Aldolases W. A. Wood

Other Deoxy Sugar Aldolases

David Sidney Feingold and Patricia Ann Hoffee

δ-Aminolevulinic Acid Dehydratase

David Shemin

δ-Aminolevulinic Acid Synthetase

Peter M. Jordan and David Shemin

Citrate Cleavage and Related Enzymes

Leonard B. Spector

Thiolase

Ulrich Gehring and Feodor Lynen

Acyl-CoA Ligases

Malcolm J. P. Higgins, Jack A. Kornblatt, and Harry Rudney

α-Glucan Phosphorylases—Chemical and Physical Basis of Catalysis and Regulation

Donald J. Graves and Jerry H. Wang

Purine Nucleoside Phosphorylase

R. E. Parks, Jr., and R. P. Agarwal

Disaccharide Phosphorylases

John J. Mieyal and Robert H. Abeles

Polynucleotide Phosphorylase

T. Godefroy-Colburn and M. Grunberg-Manago

The Lipases

P. Desnuelle

β-Galactosidase

Kurt Wallenfels and Rudolf Weil

Vertebrate Lysozymes

Taiji Imoto, L. N. Johnson, A. C. T. North, D. C. Phillips, and J. A. Rupley

Author Index—Subject Index

Volume VIII: Group Transfer, Part A: Nucleotidyl Transfer, Nucleosidyl Transfer, Acyl Transfer, Phosphoryl Transfer

Adenylyl Transfer Reactions

E. R. Stadtman

Uridine Diphosphoryl Glucose Pyrophosphorylase
Richard L. Turnquist and R. Gaurth Hansen

Adenosine Diphosphoryl Glucose Pyrophosphorylase

Jack Preiss

The Adenosyltransferases

S. Harvey Mudd

Acyl Group Transfer (Acyl Carrier Protein)

P. Roy Vagelos

Chemical Basis of Biological Phosphoryl Transfer S. J. Benkovic and K. J. Schray

Phosphofructokinase

David P. Bloxham and Henry A. Lardy

Adenylate Kinase

L. Noda

Nucleoside Diphosphokinases
R. E. Parks, Jr., and R. P. Agarwal