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Preface

The digital coded systems for either data transmission or data storage
have much in common. Since the channel or storage medium is subject
to various types of noise, distortion, and interference, the output of the
channel or storage medium differs from its input because they are both
gensitive to the errors that can result from impaired transmission. The
theory and practice of error-correction coding is concerned with protec-
tion of digital information against the errors that occur during data
transmission or storage. Many ingenious error-correction techniques
based on a vigorous mathematical theory have been developed and
have many important and frequent applications. The current problem
with any high-speed data communication system is how to control the
errors that occur during data transmission through a noisy channel. In
order to achieve reliable communications, designers should develop
good codes and efficient .decoding algorithms. Knowledge of error-
correction coding is in great demand and becomes an important asset
for many practicing engineers and computer scientists who are in-
volved in the design of large digital systems. The amount of coding
research directed at error control will continue to grow because the .
recent developments in integrated circuit chip technology have ad-
vanced so much. - ;

The history of error-correction coding begins in 1948 with the
publication of a landmark paper by Claude Shannon. Since Shannon’s
work, a great deal of effort has been devoted to the encoder-decoder
implementation for controlling errors in noisy environments. The
pioneering work of coding in the early 1950s concentrated on a theory
that required extensive mathematical rigor in the domain of abstract
algebra and probability theory. During the 1960s much effort was
devoted to finding structures for classes of good codes that could
produce an arbitrarily small probability of error, but little progress
was made. In the 1970s, coding research began to focus on designing
families of codes with larger code lengths and better performance.
However, further advances are still required to overcome practical
limitations. As the era of the 1980s opened, the emphasis in coding
research shifted dramatically from theory to practical applications.

This book is intended to serve as an introduction to error-correction
coding theory. The primary objective is to present how the basic
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concepts and.techniques of error control are applied to digital trans-
mission and storage systems so that the underlying theory can be
better understood. The book progresses systematically from block
codes to convolutional codes, through material that lies at the forefront
of modern coding theory. In studying the construction and properties of
error-correcting codes, one needs tosmake extensive use of the notions
associated with the theory of vector spaces and to understand the
concepts and operations of abstract algebra.

- The mathematical prerequisite introduced in Chapter 2 provides a
" theoretical format for the remainder of the text. Each succeeding
chapter then builds upon this theory, applying it to a specific area
within coding research. However, mathematical sophistication has
been kept at the lowest level possible. More than 134 examples with
detailed solutions and many theorems with proofs appear in the text,
both to provide a greater understanding of the subject matter and to
induce a more flexible approach to the solution of the problems at the
end of each chapter. A solution manual is available to instructors
threugh the publisher.

Chapter 1 presents an introduction and overview of error-control
coding for digital comunications and computer storage systems. Since
coding is an extremely mathematical subject, Chapter 2 presents a
brief survey of the powerful structure of abstract algebra. This alge-
braic framework provides the tools needed by the reader to understand
the theory of error-correcting codes. Although the mathematical treat-
ment in this chapter is somewhat rigorous, it is limited in scope to
materials that will be useful in succeeding chapters.

Chapters 3 to 8 are devoted to the analysis and design of block codes
that control errors in a noisy environment. The fundamentals of linear
block codes are thoroughly presented in Chapter 3. Cyclic codes, as
they are used in practice, form an important subclass of block codes.
These codes are attractive because encoding and syndrome computa-
tion can easily be implemented by employing shift-register circuits or
digital logic circuits. The basic structure and properties of cyclic codes
are presented in Chapter 4.

Chapter 5 is mainly concerned with coding techniques for noisy
channels on which transmission errors occur independent of digit
position, i.e., random errors. A simple way of decoding for some cyclic
codes, known as error-trapping decoding, is covered in this chapter.
Chspter 6 covers cyclic codes that are very effective for burst-error
correction. Many theorems and proofs that have relevance to burst-
error correction are also included. There are extensive discussions of
burst-error-trapping decoding using Fire codes.

Chapter 7 provides detailed coverage of BCH codes for multiple error
correction. Iterative algorithms for finding the error-location polyno-
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mial are presented in great detail. Numerous examples are presented,
and various hardware configurations are discussed. Hardware imple-
mentations for the syndrome computation circuit and the searching
unit for error-location numbers are presented. Software for the error-
location polynomial is included, and discussion of nonbinary Reed-
Solomon codes for concatenated coding systems is also preseated.
Chapter 8 presents the subject of majority-logic decodable codes.
Majority-logic decoding techniques for correcting random errors are
fully covered. "

Chapters 9 through 11 are devoted to the principles, structures, and
encoding-decoding methods of convolutional codes. Chapter 9 intro-
duces the fundamental properties of convolutional codes, coupled with
the encoder state diagram that serves as the basis for studying tree or
trellis code structure and distance properties. Chapter 10 presents
probabilistic decoding—that is, maximum-likelihood decoding and
sequential decoding. Maximum-likelihood decoding using the Viterbi
algorithm for hard and soft decisions, as well as sequential decoding
using both the Fano and the ZJ stack algorithms, are intensively
covered in this chapter. Performance analysis based on code distance
properties is also included.

Chapter 11 presents threshold decoding of convolutional codes by
Massey’s majority-logic decodable principle. Convolutional codes for
correcting longer bursts can be obtained by interleaving. The inter-
leaved codes will correct not only burst errors but also many patterns
of random errors. In this chapter, a code developed specifically for
correcting burst errors is covered in detail. Since this book presents the
application of error-correction coding in the context of communications
system design, the emphasis throughout is placed on the design and
implementation of encoders and decoders.

The scope of the book is adequate to span a two-semester graduate-
level sequence, and the material has been organized with such a course
in mind. The book can also be used as reference for electronic engineers
and computer scientists in industry who are interested in studying the
fundamentals of coding and how to apply the principles to the design of
error-control digital systems.

A natural division of the material is to cover Chapters 1 through 7 in
a first-semester graduate course, and Chapters 8 through 11 in the
second. Alternatively, portions of the book can be used for a one-
semester course, at the instructor’s choice, but it is recommended that
the instructor cover Chapters 3, 4, 6, 7, 9, and 10, which include the
fundamentals of both block codes and convolutional codes. Chapters 3,
4, 5, 7(partly), 9, and 10 should be studied by senior students who are
seriously interested in coding theory. ¢

In most books, the notation for block codes often differs from the
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notation for convolutional codes. Therefore, I have given careful
consideration to choosing notation that brings clarity and internal
consistency to the book. The symbol d is used for the information data;
c for the code word or transmitting vector; e for the error pattern; and r
for the received word. This notation is used consistently not only with
block codes, but with convolutional codes as well.

This book is the outgrowth of my teaching and research efforts in
coding over the last 20 years at the university and in industry, coupled
with my supervision of many graduate students at both the M.S. and
Ph.D. levels. I thank them all, even if not by name. The books and
papers that had a large influence on this book, either directly or
indirectly, are listed in the bibliography at the end of the text.
However, it is impossible to mention all those people who influenced
me a great deal in writing this book. My sincere gratitude goes to
them.

I am grateful to the Ministry of Communications, Republic of Korea,
Korea Telecommunication Authority, the Electronics and Telecommu-
nigations Research Institute, and the Korea Science and Engineering
Foundation for their continuing support of my interest and research in
the coding field. Some of the research papers for those organizations
are contained in this book.

I would like to express my special appreciation to Rita Margolies,
Editing Supervisor, who made numerous corrections and suggestions
for improvements of this book. I also wish to thank composition and

-production people for their dedication and perseverance in preparing
this beautiful book. A

Man Y. Rhee
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Chapter

Introduction and Overview

Digital data transmission through a physical channel in a communi-
cation system and data recording on a storage medium in a computer
system have much in common. In both cases, digital data are trans-
ferred from an information source to a destination. Since the channel
or storage medium is subject to various types of noise, distortion, and
interference, the output of the channel or storage medium differs from
its input because of the errors that can result from impaired transmis-
sion. Therefore, the need for error control arises from the massive
amount of data processed in communication and storage systems.

Good codes and coding algorithms are available to meet this need.
In addition, the rapid advances in gate array integrated circuit chip
technology have made possible the design and implementation of
encoder-decoder pairs which use these coding aigorithms.

. Error-control coding is a special subject with its own history and its
own arithmetic systems. The theory and the practice of error-control
coding relate to protection of digital information against the errors
that occur during data transmission or storage. Many ingenious error-
correction techniques have been developed based on rigorous mathe-
matical theory and have then become important subjects with fre-
quent applications. A major concern of the designer is the control of
errors so that reliable reproduction of information and da‘a can be ob-
tained. .

1.1 Model of Digital-Coded Systems

The block diagram in Fig. 1.1 illustrates the basic elements for trans-
mission or storage of digital information through a coded system. For
this system, all information transferred between blocks must be in
digital form if error control is to be utl)lzed ,

9390902
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Figure 1.1 Block diagram for digital-coded system.

Data, which enter the communication (or storage) system from the
information source, are first processed by a source encoder that is de-
signed to convert the source information into coded form. The source
encoder usually transforms the source output into a sequence of bi-
nary digits (bits) called the information sequence d. The source output
can be either a continuous waveform or a sequence of discrete sym-
bols. In the case of analog output, the source encoder must possess an
analog-to-digital (A/D) conversion capability, for example, pulse-code
modulation (PCM). ' '

The channel encoder transforms the information sequence d into a
binary-coded sequence ¢ called a code word. The channel code word is
a new, longer sequence that contains redundancy of parity-check sym-
. bols. Each symbol in the code word might be represented by a bit or,

perhaps, by a group of bits. In general, binary digits are not suitable
for transmission over the waveform channel or for recoding on a dig-
. ital storage medium.

The binary digits in a code word from the channel encoder are fed
into a modulator (or writing unit) that transforms each bit into an el-
ementary signal waveform. Thus, the modulator must convert each
bit of the channel code word into a suitable waveform of duration T

- seconds in order for the bits to transmit. Binary phase shift keying
(PSK) or frequency shift keying (FSK) are commonly used as signal-
ing waveforms for transmitting the code word. This waveform enters
the channel (or storage medium) and is corrupted by noise. The
waveform channel consists of all the hardware and physical media
that the waveform passes through in going from the output of the
moduiator (or writing unit) to the! input of the demodulator (or read-
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ing unit). In coherent systems, the binary modulation scheme of
PSK is often used. With this binary transmission, a 1 is represented «
by the waveform s,(f) = V2P cos wyt, while a 0 is represented by the
antipodal signal sy(f) = —s;(f) = V2P cos (w,t + 180°), where the
power in the waveform is P = E,/T' In noncoherent PSK systems, the
demodulation of the waveform sign is not possible, so typically a pair
of signaling tones, sy(t) = V2P sin (0 + 6) and s,(f) = V2P sin
(w,t + 8), is used to represent the transmitted digits 0 and 1, respec-
tively, and to pass the received signal through parallel bandpass
matched filters. An alternate approach is to use a correlator with the
received signal multiplied by a locally generated version of the trans-
mitted waveform. Typical examples of waveform channels are tele-
phone lines, microwave links, high-frequency radio liriks, telemetry
links, and satellite links. Typical storage media include core memo-
ries, magnetic tapes, drums, disk files, and optical memory units.
Each of these examples is subject to various types of noise distur-
bances. Some random or burst noise is usually added to the cBannel
waveform during transmission. Distortion may be present as a result
of heavy filtering or multiple signal paths. The disturbance may cause
signal suppression which could in turn cause the amplitude of the re-
ceived signal to vary, or the channel itself may be time-varying. The
disturbance may generally be modeled as an additive gaussian pro-
cess, or it may be urban noise of various kinds, or it may resulit from
intentional jamming by an unfriendly party. Channels are also de-
fined in another way. For memoryless channels, the noise affects each
transmitted bit independently. Hence transmission errors occur ran-
domly in the received word r. Typical examples of memoryless
random-error channels are most line-of-sight transmission channels,
many satellite channels, and deep-space channels. For memory chan-
nels, the noise does not occur independently in the channel and the
transmission errors occur in bursts. Examples of burst-error channels
are (1) radio channels where the error bursts are caused by signal
fading as a result of multipath transmission, (2) telephone lines which
are affected by impulsive switching noise and crosstalk from other
lines, and (3) magnetic recordings, which are subject to tape dropouts
due to surface defects and dust particles. Of course, there are some
channels which contain a combination of both random and burst
errors.

Next, the resulting received signal is processed first by the demod-
" ulator and then by the channel decoder. The demodulator (or reading
unit) makes a decision for each received signal of duration T seconds
to determine which of the two possible digits, 1 or 0, was transmitted.
This is called a hard decision. The output of the demodulator is called
the received word r. This r may not match the transmitted code word
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c as a result of transmission error. Each demodulated digit is a best
estimate of the transmitted digit, but the demodulator makes some er-
rors because of channel noise. The probability that this estimate is
correct depends upon the signal-to-noise ratio in the data bandwidth,
the amount of signal distortion due to filtering and nonlinear effects,
and the detection scheme being used.

The channel decoder transforms the received sequence r into a bi-
nary sequence d, or the estimated information sequence. Since the
noise may cause some decoding errors, the channel decoder must be
implemented to minimize the probability of decoding error. The chan-
nel decoder uses the syndrome of a received code word r to correct the
errors in the received word and then produces an estimate of the in-
formation sequence d. If all errors are corrected, the estimated infor-
mation sequence d matches the original source information d.

The source decoder transforms the estimated sequence d into an es-
timate of the source output and delivers this estimate to the user.
Thus the source decoder performs the inverse operation of the source
encoder and delivers its output to the data sink.

This book aims to present the analysis, design, and implementation
of the channel encoder and decoder, which is a subject known as error-
correction coding. The data compression or compaction functions per-
formed by the source encoder and the source decoder are not discussed
here. The information source and source encoder are combined into a
digital source with output d; the modulator (or writing unit), the
waveform channel (or storage medium), and the demodulator (or read-
ing unit) are combined into a coding channel with input ¢ and output
r; and the source decoder and user are combined into a digital sink
with input d. Thus, in this book, the channel encoder and decoder will
be referred to simply as the encoder and decoder.

1.2 Coding Ciassification

Coding is largely classified into two different types. (1) coding for
block codes-and (2) coding for convolutional codes. All data of interest
in a binary block code can be represented as a binary information se-
quence consisting of 1s and 0s. The encoder for a block code divides the
information sequence into information blocks of % bits. Thus, each in-
“yrmation block is represented by the binary k-tuple d = (d,, d,, -
d,_,) simply called an information sequence. There are a total of ok
different possible kinds of information sequences. The encoder trans-
forms each k-bit inforriation sequence d independently into an n-
tuple ¢ = (¢, ¢y, ..., C,—1) called a code word. Thus, a binary block
code consists of a set of code words of length n. The elements of a code
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word are selected from an alphabet of ¢ elements. When ¢ = 2 for 0
and 1, the code is called a binary code, whereas when g > 2, the code is
nonbinary. There are 2” possible code words in a binary block code of
length n (k < n). However, from these 2" code words, we select only 2*
code words to form a code. Thus a block of & information bits is
mapped into a code word of length n at the encoder output. This set of
2* code words of length n is called an (n, k) block code. The ratio
R = k/n is known as the code rate. Since the n-bit code word ¢ depends
only on the corresponding k-bit information sequence, d, the encoder
is memoryless and can be implemented with a combinational logic cir-
cuit. Since R < 1 for a binary code, n — k redundant bits can be added
to each k-bit information sequence to form a code word. These redun-
dant bits provide the code with the capability of combating the chan-
nel noise. These n — k redundant bits are called parity-check bits.

Besides its code rate R, an important parameter of a code word is its
weight, which is simply the number of nonzero elements that it con-
tains. In general, each code word has its own weight. The set of all
weights in a code constitutes the weight distribution of the code.
When all the 2* code words have equal weight, the code is called a
constant-weight code. The distance between the two code words is de-
fined as the number of corresponding elements or positions in which
they differ. This measure is called the Hamming distance. The small-
est value of the set of Hamming distances for the 2* code words is
called the minimum distance and is denoted by d,;.. An (i, &) block
code with the minimum distance d,,;,, guarantees the correction of all
the error patterns of ¢ = |(d, — 1)/2} or fewer errors (|x] denotes the
largest integer contained in x). The performance characteristics ob-
tained by coding will depend on a number of code parameters such as
the code rate, the number of code words in the code, the distance prop-
erties of the code, the coding bound, and the coding gain.

A nurcber of elementary concepts from linear algebra play a central
role in coding theory. Expressed in terms appropriate for (n, k) block
codes, the vector space V consists of the 2" distinct n-tuples over the
field of two elements {0, 1}. An (n, k) linear code is a set of 2* iz-tuples
called code words which forms a subspace S of vector space V over
Galois field GF(2). If we select a set of k linearly independent vectors
from V and from this set construct the set of all linear combinations of
these vectors, the resulting set forms a subspace S of dimension k. If
the set of vectors in V is orthogonal to every vector in S, this set of
vectors is also a subspace of V and is called the null space of S. Since
the dimension of S is k, the dimension of the null space is n — k. The
null space of S is another linear code which consists of 2°* code words
of length n and n — k information bits. We call it an (n, n — k) dual
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code. Furthermore, some topics that are related to the theory of error-
correcting codes, such as groups, rings, and Galois fields in abstract
algebra, will be discussed in Chap. 2.

The usual figure of merit for a coded system is the ratio of energy
per information bit to noise spectral density E,/N, that is required to
" achieve a given probability of error. The coding gain is defined for the
amount of improvement that is achieved when a particular coding
scheme is used. The usual method of determining coding gain is to plot
the probability of error P(E) versus E,/N, for both coded and uncoded
operations and to read the difference in required E,/N, at a specified
error rate. There are essentially two kinds of coding bounds, i.e.,
bounds on minimum distance and bounds on performance. The bounds
on minimum distance are the Hamming bound and the Plotkin bound,
which indicate the maximum possible minimum distance for a given
code length and code rate, while the achievable lower bound on the
minimum distance of the best code is the Gilbert-Varsharmov bound.
When new codes are being developed, minimum distance bounds are
often used to determine how close the code is to the best possible one.
These bounds are fully discussed in Chap. 3. The bounds on perfor-
rance indicate that the average performance of all block codes exhib-
its a probability of error that decreases exponentially with code
length. These random coding bounds imply the existence of specific
codes which do better than average. However, these bounds are not
very useful for estimating the absolute performance of a code because
good codes exhibit a probability of error that is considerably lower
than that predicted by the bound. Chapters 5 through 8 are devoted to
the analysis, design, and implementation of block codes for controlling
errors in a noisy environment.

Modern coded systems are often designed to transmit at very high
data rates. To protect such systems from error, designers often use an
alternate coding scheme using convolutional codes in addition to block
codes. A binary convolutional code can be generated by a linear finite-
state machine connected to an m-stage shift register, n modulo-2
adders connected to some of the shift register stages, and a multi-
plexer that scans the output of the modulo-2 adders. This machine is
called an (n, k) convolutional encoder with memory order m, some-
times denoted as an (n, k, m) convelutional encoder as a matter of con-
venience.

The input data to the convolutional encoder, called the information
sequence, are shifted into and along the shift register % bits at a time,
and the encoder output sequences are obtained by taking the convolu-
tion of the information sequence with the generator sequences of the
code. Thus the multiplexer terminals use a process that scans in a se-
rial fashion for the code word that iz i be transmitied over the chan-
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nel. The number of output bits fot each k-bit input sequence is n. Since
a convolutional encoder generates n encoded bits for every k informa-
tion bits, the code rate is R = k/n, which is consistent with the defini-
tion of the code rate for a block code. Generally, & and n are small in-
tegers.

The generator matrix G of the code is a semi-infinite matrix which
has an infinite number of rows and columns. This corresponds to the
fact that the information and code sequences can be arbitrarily very
large. However, for any practical application, there is a maximum al-
lowable length L for which we often define the Lth truncation of a con-
volutional code. Thus the information sequence consists of kL bits, and
the code sequence is represented by n(m + L) bits. Therefore, the Lth
truncation of an (n, k) convolutional code with memory order m can be
viewed as an (n(m + L), kL) linear block code. In this sense, cdnvolu-
tional codes may be thought of as a special class of linear block codes
with superior properties which both facilitate decoding and improve
performance. The constraint length is defined as n, = (m + 1)n be-
cause it is the maximum number of encoder outputs that can be af-
fected by a single information bit.

With block codes, algebraic properties have been very important in
constructing good classes of codes and in developing decoding algo-
rithms. However, this is not the case with convolutional codes in gen-
eral. Decoding of convolutional codes is probabilistic decoding. Gener-
ally, maximume-likelihood decoding by the Viterbi algorithm and
sequential decoding by the Fano algorithm or the stack algorithm are
called probabilistic decoding. On the other hand, threshold or majority-
logic decoding is classified as algebraic decoding.

The Viterbi algorithm was proposed in 1967 and has been recog-’
nized as an attractive solution to maximum-likelihood decoding.
Maximum-likelihood decoding is characterized as the,determination
of the shortest path through a topological structure callec” a code trel-
lis; an efficient solution for that determination is the Viterbi algo-
rithm. However, Viterbi decoding of convolutional codes is not practi-
cal for a long code with a larger constraint length n4 because the error
probability increases exponentially with n,. Since both complexity
and decoding effort increase exponentially with n,, convolutional
codes with small constraint lengths must be used for Viterbi decoding
because of the limitation of the encoder memory m. Another point re-
lated to the Viterbi algorithm is that 2™ computations must be per-
formed per data sequence even when the noise effect is negligible;-
which results in wasted decoding effort.

In 1961, Wozencraft devised a decoding technique called sequential
decoding, which has been the subject of research interest for over 20
years. In 1963, Fanc introduced a new version of sequential decoding
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which is referred to as the Fano algorithm. Another version of sequen-
tial decoding, known as the stack or ZJ algorithm, was discovered in-
dependently by Zigangirov in 1966 and Jelinek in 1969. A major prob-
lem with sequential decoding is that the number of computations
required to advance one node deeper into the code tree is a random
variable. This characteristic strongly affects the complexity required
to achieve a given level of performance. The performance of sequential
decoding is slightly suboptimum, but its decoding effort is indepen-
dent of the code constraint length. Thus sequential decoding can be
used with codes of long constraint lengths. But its major drawback is
that noise frames require a great deal of computation. Consequently,
decoding times occasionally exceed some upper limit, causing data to
be lost or erased.

In 1963, Massey introduced a less efficient but simpler-to-
implement decoding method, called majority-logic or threghold decod-
ing, which would be applicable to conyolutional codes. The structure of
convolutional codes is not algebraic but topological. But an algebraic
approach can also be used for decoding convolutional codes. Conceptu-
ally and practically threshold decoding is closest to mgjority-logic de-
coding of block codes. Thus threshold decoding can eliminate the
search aspects of Viterbi decoding and sequential decoding. Although
threshold decoding is inferior in performance when compared to
Viterbi or sequential decoding, decoder implementation is somewhat
simpler.

1.3 Development of Coding Theory

The history of error-correction coding began in 1948 with the publica-
tion of a landmark paper by Claude Shannon. Since Shannon’s work, a
great deal of effort has been devoted to the problem of implementing
encoder-decoder pairs for error control in noisy communications and
digital computers. There are two different types of codes in common
use today, i.e., block codes and convolutional codes.

During most of the 1950s, coding research was devoted primarily to
- block codes with a strong emphasis on algebraic approaches. In spite
of diligent research, no better class of codes was found until the end of
the decade. Hamming codes (1950) were the first class of linear block
codes devised for single-error correction.

During the 1960s much effort was devoted to finding structures for
classes of good codes that could produce an arbitrarily small probabil-
ity of error, but not much progress was made. Meggitt (1961) devised
a decoder that was applicable to any cyclic code, but refinements were
necessary for practical implementation; the technique is known as
error-trapping decoding. Although the idea of error-trapping decoding
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was introduced by Meggitt, it was refined by Kasami, Mitchel,
Rudolph, and others. However, error-trapping decoding becomes inef-
fective if it is applied to long, high-rate codes that have a greater
error-correcting capability. Fire (1959) discovered a large class of
burst-error-correcting cyclic codes. Fire codes comprise the first class
of cyclic codes that can be used for correcting burst errors and that can be
decoded by the error-trapping technique. Burton (1969) introduced a
class of phased-burst-error-correcting cyclic codes. Bose and Chaudhuri
(1960) and Hocquenghem (1959) found a large class of multiple-
error-correcting codes, called the BCH codes. The discovery of these pow-
erful BCH codes led to a search for a practical decoding algorithm, which
was devised by Peterson (1960), refined by Gorenstein and Zierler (1961),
and extended by Berlekamp, Massey, Chien, Forney, and Lin. In addi-
tion, Reed and Solomon (1960) found an extremely important and prac-
tical class of nonbinary BCH codes that could cope with bursts of errors.
The. Reed-Solomon codes are at present coming into widespread use in
many communication and computer storage systems. The majority-logic
decoder is another effective device for decoding certain classes of cyclic
block codes. Massey (1963) was the first to present a unified treatment
for majority-logic decoding algorithms. The maximum-length codes and
the difference-set codes are two small subclasses of one-step majority
decodable cyclic codes. Finite-geometry codes (euclidean geometry codes
and projective geometry codes) have their own structure and rules of ortho-
gonalization for the multiple-step majority decodable codes. Rudolph
(1967) investigated finite geometry codes which were extended and gen-
eralized by many coding researchers.

Another remarkable achievement made in the 1960s was the dis-
covery of convolutional codes. Since 1955 when convolutional codes
were first introduced by Elias, Wozencraft (1961) proposed sequential
decoding as a practical decoding method, Fano (1963) introduced the
Fanc algorithm as a new version of sequential decoding, and another

. version of sequential decoding, called the ZJ stack algorithm, was in-
dependently discovered by Zigangirov (1966) and Jelinek (1969). In
1967, Viterbi proposed the Viterbi algorithm for maximum-likelihood
decoding. Since then Omura (1969) and Forney (1972-1974) proved
that the Viterbi algorithm is the best maximum-likelihood decoding
algorithm for convolutional codes with shorter constraint lengths. In
1963, Massey proposed a less powerful but easy to implement decoding
method called threshold decoding. It differs from Viterbi decoding and
‘sequential decoding in that the final decision made on a given infor-
mation block is based on only one constraint length of received blocks
rather than on the entire received sequence. Since Hagelbarger (1959)
introduced the concept of correcting burst errors of recurrent codes,
many coding theorists have developed techniques for providing more



