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Preface

Differential-algebraic equations (DAE’s) arise naturally in many applications,
but present numerical and analytical difficulties which do not occur with ordi-
nary differential equations. The numerical solution of these types of systems
has been the subject of intense research activity in the past few years. A great
deal of progress has been made in the understanding of the mathematical struc-
ture of DAE’s, the analysis of numerical methods applied to DAE systems, the
development of robust and efficient mathematical software implementing the
numerical methods, and the formulation and solution of DAF systems arising
from problems in science and engineering. Many of the results of this research
effort are scattered throughout the literature. Our objective in writing this
monograph has been to bring together these developments in a unified way,
making them more easily accessible to the engineers, scientists, applied math-
ematicians and numerical analysts who are solving DAE systems or pursuing
further research in this area. We have tried not only to present the results
on the analysis of numerical methods, but also to show hmg these results are
relevant for the solution of problems from applications and to develop guide-
lines for problem formulaticn and effective use of the available mathematical
software.

As in every effort of this type, time and space constraints made it impos-
sible for us to address in detail all of the recent research in this field. The
research which we have chosen to describe is a reflection of our hope of leaving
the reader with an intuitive understanding of those properties of DAE systems
and their numerical solution which would in our opinion be most useful in the
modeling of problems from science and engineering. In cases where a more
extensive description can be found in the literature, we have given references.

Much of our research on this subject has benefitted from collaboration.
The DASSL code would never have reached its present state of development
without the encouragement of Bob Kee and Bill Winters, whose problems pro-
vided us with numerical difficulties that we couldn’t possibly have dreamed
up ourselves. The direction of our research and the development of DASSL
have both benefitted enormously from the many users of DASSL who were
generous, or in early versions desperate, enough to share with us their expe-
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riences and frustrations. We would like to thank John Betts for introducing
us ta the difficult nonlinear higher index trajectory problems which inspired
much of our research on the solution of higher index systems. Qur thinking
on the analysis of numerical methods for DAE’s has been influenced through
our collaborations with Kevin Burrage, Ken Clark, Bill Gear, Bjorn Engquist,
Ben Leimkuhler and Per Létstedt, with whom we have shared a great many
happy hours discussing this subject.

Our friends and colleagues have made many useful suggestions and cor-
rected a large number of errors in early versions of the manuscript. We would
like to thank Peter Brown, George Byrne, Alan Hindmarsh, Bob Kee, Michael
Knorrenschild, Ben Leimkuhler, Quing Quing Fu and Clement Ulrich for their
comments and constructive criticism on various chapters. Claus Fiihrer pro-
vided us with such excellent and extensive comments on Section 6.2 that he
can virtually be considered a coauthor of that section.

We are grateful to our management at Lawrence Livermore National Labo-
ratory and at The Aerospace Corporation for their support of this project, and
for their confidence and patience when it became clear that the effort would
take longer to complete than we had originally planned. Very special thanks
are due to Don Austin of the Applied Mathematical Sciences Subprogram of
the Office of Energy Research, U. S. Department of Energy, and to Lt. Col.
James Crowley of the Air Force Office of Scientific Research for their funding
and support not only of this project but also of much of the research upon
which this monograph is based. Part of this work was performed under the
auspices of the U. S. Department of Energy by the Lawrence Livermore Na-
tional Laboratory under Contract W-7405-Eng-48. Fran Karmitz and Auda
Motschenbacher provided much needed expert assistance in typesetting vari-
ous sections of the manuscript and its revisions.

March 31, 1989 K. E. Brenan
S. L. Campbell
L. R. Petzold
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Chapter 1
Introduction

1.1 Why DAE’s?

Most treatments of ordinary differential equations (ODE’s), both analytical
and numerical, begin by defining the first order system

F(t,y(t),¥'(t)) = 0, (1.1.1)

where F and y are vector valued. An assumption that (1.1.1) can be rewritten
in the ezplicit, or normal form

¥'(t) = (£, ¥(t)) : (1.1.2)

is then typically invoked. Thereafter, the theorems and numerical techniques
developed concern only (1.1.2). While (1.1.2) will continue to be very impor-
tant, there has been an increasing interest in working directly with (1.1.1).
This monograph will describe the current status of that effort.

Our emphasis is on the numerical solution of (1.1.1) in those cases where
working directly with (1.1.1) either has proved, or may prove to be, advanta-
geous. This perspective has affected our choice of techniques and applications.
We assume that the reader has some knowledge of traditional numerical meth-
ods for ordinary differential equations, although we shall review the appropri-
ate information as needed. We confine ourselves to initial value problems.

If (1.1.1) can, in principle, be rewritten as (1.1.2) with the same state
variables y, then it will be referred to as a system of implicit ODE’s. In
this monograph we are especially interested in those problems for which this
rewriting is impossiblé or less desirable. In a system of differential-algebraic
equations, or DAE’s, there are algebraic constraints on the variables. The
constraints may appear explicitly as in (1.1.3b) of the system

F(z',z,y,t)
G(z,9,t)

0 (11.3a)
0, (1.1.3%)
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where the Jacobian of F with respect to z’ (denoted by 9F/8z' = F) is
nonsingular, or they may arise because F, in (1.1.1) is singular. In the latter
case, we assume that the Jacobian is always singular. In the problems con-
sidered here, difficulties arise from a lower dimensional solution manifold and
the dependence of the solution on derivatives of other terms, rather than from
the existence of turning or singular points.

There are several reasons to consider (1.1.1) directly, rather than to try to
rewrite it as an ODE. First, when physical problems are simulated, the model
often takes the form of a DAE depicting a collection of relationships between
variables of interest and some of their derivatives. These relationships may
even be generated automatically by a modeling or simulation program. The
variables usually have a physical significance. Changing the model to (1.1.2)
may produce less meaningful variables. In the case of computer-generated or
nonlinear models, it may be time consuming or impossible to obtain an explicit
model. Parameters are present in many applications. Changing parameter val-
ues can alter the relationships between variables and require different explicit
models with solution manifolds of different dimensions. If the original DAE
can be solved directly, then it becomes easier for the scientist or engineer
to explore the effect of modeling changes and parameter variation. It also
becomes easier to interface modeling software directly with design software.
These advantages enable researchers to focus their attention on the physical
problem of interest. There are also numerical reasons for considering DAE’s.
The change to explicit form, even if possible, can destroy sparsity and pre-
vent the exploitation of system structure. These pomts will be examined more
carefully in later chapters.

The desirability of working directly with DAE’s has been recognized for
over twenty years by scientists and engineers in several areas. Depending
on the area, DAE’s have been called singular, implicit, differential-algebraic,
descriptor, generalized state space, noncanonic, noncausal, degenerate, semi-
state, constrained, reduced order model, and nonstandard systems. In the
1960’s and early 1970's there was a study of the analytical theory of linear con-
stant coefficient and some nonlinear systems [174,227]. This work was based
on coordinate changes, reductions, and differentiations. The ﬁrst practical nu-
merical methods for certain classes of DAE’s were the backward differentiation
formulas (BDF) of [113]. Beginning in the late 1970’s, there was a resurgence
of interest in DAE’s in both the scientific and mathematical literature. New
and more robust codes, such as DASSL [200] and LSODI [143] have recently
become available. The theoretical understanding of when to expect these codes
to work, and what to do when they do not, has improved. There has been
increasing computational experience with a wider variety of applications. This
monograph deals with these recent developments, many of which have reached
a degree of maturity only within the last two or three years.
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1.2 Basic Types of DAE’s

None of the currently available numerical techniques work for all DAE’s. Some
additional conditions, either on the structure of the DAE and/or the numerical
method, need to be satisfied. One approach to developing a theory for numer-
ical methods is to make technical assumptions that can be hard to verify or
understand but enable proofs to be carried out. We prefer, as much as possi-
ble, to consider DAE’s under various structural assumptions. This approach is
more directly related to problem formulation, makes the assumptions easier to
verify in many applications, and has proven useful in deriving new algorithms
and results. This structural classification will be begun in this section and is
continued in more detail in Chapter 2.
Linear constant coefficient DAE’s are in the form

Az'(t) + Bz(t) = f(t), (1.2.1)

where A, B are square matrices of real or complex numbers and ¢ is a real
variable. We shall usually assume vectors are real for notational convenience
but the results are the same for the complex case. The case of rectangular
coefficients has been studied [49,111] but we shall not consider it. The general
analytical and numerical behavior of (1.2.1) is well understood. However,
there is still some research being .done on applications of (1.2.1) in the control
literature and in the numerical problem of computing the structure of matrix
pencils [126,149,242].

While most applications that we have seen have led to either linear constant
coefficient or nonlinear DAE's, linear time varying DAE’s )

A(t)2'(t) + B(t)z(t) = f() (1.2.2)

with A(t) singular for all ¢, exhibit much of the behavior which distinguishes
general DAE’s from linear constant coefficient DAE’s. At this time, there are
techniques and results which seem appropriate for nonlinear systems, but for
which complete and rigorous proofs exist only for linear time varying systems.
Hence, (1.2.2) represents an important class of DAE’s which we will study iz
order to gain an understanding of general DAE’s. We shall also see that i
occurs in some applications.

System (1.2.2) is the general, or fully-implicit linear time varying DAE. An
important special case is the semi-ezplicit linear DAE

z3(2) + Bu(t)z1(t) + Biz(t)z2(2)
Ba1(t)z1(t) + Baa(t)za(t)

A(t)
fa(t).

The general (or fully-implicit) nonlinear DAE

F(t,y(t),y'(t)) = 0
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may be linear in the derivative

At y(t)y'(t) + £, ¥(t)) = 0. (1.2.3)

This system is sometimes referred to as linearly implicit. A special case of
(1.2.3) is the semi-explicit nonlinear DAE

(1) = fi(z1(t),z2(t),t)
0 = falmi(t),z2(2),0).

Depending on the application, we shall sometimes refer to a system as semi-
explicit if it is in the form ‘

F(2'(t), 2(t), y(t),t) 0
Gla(t),y@)t) = 0 |
where Fy+ is nonsingular. Many problems, such as variational problems, lead
to semi-explicit-systems.. We shall see that such systems have properties which
may be exploited by some numerical algorithms. However, since it is always
possible to transform a fully-implicit linear constant coefficient DAE to a semi-
explicit linear constant coefficient DAE by a constant coordinate change, these
two’ cases are not considered separately. While in Chapter 2 we will discuss
what type of operations, such as coordinate transformations or premultiplica-
tions by nonsingular matrices, may be safely applied to a DAE without altering

the behavior of a numerical method, it is important to note here that constant
coordinate changes are_permitted. :

li

1.3 Applications

.

In this section we will briefly describe several classes of problems where DAE’s
frequently arise. The categories overlap to some extent, but there are es-
sentially four types of applications that we consider. Our grouping of these
applications is based on how the equations are derived rather than on the
type of equations that result. Throughout the remainder of this monograph
we shall make reference to these problems in order to illustrate the relevance of
key concepts. The numerical solution of several specific applications involving
DAE’s will be developed in mere detail in Chapter 6.

1.3.1 Constrained Variational Problems

Variational problems subject to constraints often lead to DAE’s. For example,
in a constrained mechanical system with position z, velocity u, kinetic energy
T(z,u), external force f(z,u,t) and constraint ¢(z) = 0, the Euler-Lagrange
formulation yields {121}

! u

=
d d _eor ' Ty
-Et--a—uT(z:,u) = % + flz,u, )+ G A
0 = ¢(2),
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where G = 8¢/0z, and X is the Lagrange multiplier. This system can be
rewritten as

27 .

%ﬁu' = g(z,u,t) +GTA (1.3.1a)
= u (1.3.1b)
0 = ¢z). (1.3.1¢)

This DAE system in the unknown variables u, z, and A is linear in the deriva-
tives. If, as is often the case, 3*T/0u? is a positive definite matrix, then
multiplication of (1.3.1a) by (8?T/0u?)~! converts (1.3.1) to a semi-explicit
DAE.

As a classical example of a DAE arising from a variational problem, con-
sider the equations of motion describing a pendulum of length L. If g is the
gravitational constant, A the force in the bar, and (z,y) the cartesian coordi-
nates of the infinitesimal ball of mass one at the end, we obtain the DAE

‘
2 = Az

" — Ay_g
0 = 224y L%

Several problems in robotics have been formulated as DAE’s utilizing this
variational approach [187]. One example is a robot arm moving with ar end
point in contact with a surface. Using joint coordinates; the motion of this
object may be modeled as the DAE

M(z)z" + G(z,2’)
0

u+ BT (2)A
#(z)

i

H

with B = ¢,z € R*, A € R™, u € R*. M is the mass matrix, G characterizes
the Coriolis, centrifugal and gravitational effects of the robot, u is the input
(control) torque vector at the joints, ¢ defines the contact surface, and BTx
is the contact force vector. This system can be converted using the standard
substitution z’ = v to a DAE which is linear in the derivative. Other variations
such as two robots, inertial loads, and moving contact surfaces also fall into
this framework [187]. ’

Other examples of DAE’s arising from constrained variational problems
include optimal control problems with unconstrained controls. In these prob-
lems, there is a process given by

' = f(z,u,t) (1.3.2)

and a cost .
1
Jlz,u] = j 9(z,u,s)ds. ' (1.3.3)
o -
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The problem is to choose the control u in order to minimize the cost (1.3.3) -
subject to (1.3.2) and certain specified initial or boundary conditions. The
variational equations for (1.3.2),(1.3.3) for the fixed time, fixed endpoint prob-
lem yield the semi-explicit DAE system

¢ = f(z,u,t)
X ~gz(z,u,t) — fTX
0 = gu(z,u,t)+ fIA

I

One of the most studied special cases of this DAE is the quadratic regulator
problem with process and cost
' = Az+ Bu
1
Jlz,u] ] 2T Qz + uT Ruds, (1.3.4)
¢

0

»

where A, B, Q, R are matrices with @, R positive (semi-)definite. In this case,
the variational equations become the linear time varying semi-explicit DAE
system

' = Az + Bu
N = -Qz+ AT
0 = Ru+ BT (1.3.5)

Often the matrices 4, B, Q, and R are constant. Depending eh the initial
conditions, boundary conditions, and information sought, these DAE’s are
frequently boundary value problems. Many other variations on these control
problems can be found in [12,37].

1.3.2 Network Modeling

In this approach, one starts with a collection of quantities and known, or
desired, relationships between them. Electrical circuits are often modeled
this way. The circuit is viewed as a collection of devices such as sources,
resistors, inductors, capacitors (and more exotic elements such as gyrators,
diodes, etc.) lying on branches connected at nodes. The physical quantities of
interest are usually taken to be the currents in the branches and the voltages
at the nodes (or voltage drops on the branches). These quantities are related
by the device laws which are usually in the form of v-i characteristics and
Kirchoff’s node (current) and loop (voltage) laws. These DAE models are
often called descriptor or semistate [191] systems in the electrical engineering
literature. In an RLC circuit with linear capacitors, resistors, and inductors,
the equations will be semi-explicit and often linear constant coefficient. They
will be nonlinear if such devices as diodes or nonlinear resistors are included.
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Many of these systemns can be written in the form of a DAE which is linear in
the derivative [191]

Az' + B(z) = Du
y = F(z)

where A may be singular, u is the vector of inputs, and y is the vector of
outputs or observations.

Earlier we discussed constrained variational equations. A somewhat related
problem is that of prescribed path control. In prescribed path control, one
considers the process (or plant) to be given by

' = f(z,u,t) (1.3.6)

where z are the state variables and u are the control variables. The goal is to
pick u so that the trajectory z follows some prescribed path

0 = g{z,u,t). | (1.3.7)

Frequently u is absent from (1.3.7). As we shall see later, this can impose
numerical difficulties in solving the semi-explicit DAE (1.3.6),(1.3.7).

To illustrate the relationship between this problem and our earlier con-
strained optimization problem, consider a robotic control problem. If a contact
point is moving along a surface, then the constraint is imposed by the surface.
The surface exerts forces on the robot and the problem would most likely
be modeled by the variational approach. If, however, the robot were moving
freely through the workspace and the prescribed path (1.3.7) was being spec-
ified to avoid collision with fixed objects, then the problem would most likely
be modeled by taking the free dynamics (1.3.6) and imposing the constraint
(1.3.7). In Chapter 2 we shall define a fundamental concept called the index
of a DAE. Generally, the higher the index, the more difficult the problem is
numerically. The prescribed path control of robot arms with flexible joints
[88,90] leads to the highest index problems we have seen to date.

In trajectory prescribed path control problems, the DAE system models
a vehicle flying in space when algebraic path constraints are imposed on its
trajectory. A particular example of this type of DAE concerned the design of
a safe reentry profile for the space shuttle [32]. In order to insure the shuttle is
able to survive the reentry, mission restrictions concerning heating constraints
and structural integrity requirements must be evaluated with respect to the
forces acting on the vehicle. A particular trajectory profile is selected inside
an acceptable corridor of trajectories which has been determined by analyz-
ing numerous physical constraints such as the vehicle’s maximum load factors,
maximum surface temperature constraints at a set of control points, and equi-
librium glide boundaries. The equations modeling the shuttle flying along this
reentry profile describe a DAE system in the form (1.3.6),(1.3.7). The differ-
ential equations (1.3.6) mclude the vehicle’s translational equations of motion.
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The trajectory profile is described by one additional algebraic equation of the
form

g9(z.t) =0, (1.3.8)

where the state variables = describe the vehicle’s position and velocity. The
bank angle 3 is selected as the control variable . The semi-explicit DAE
(1.3.6),(1.3.8) exhibits several features that will be discussed in Chapters 2
and 6. Note that because of the many nonlinearities involved in this model
problem, it is not easy to convert this DAE into an explicit ODE, even locally.

Another type of prescribed path control problem arises when there are
invariants (i.e., relations which hold along any solution trajectory) present
in the solution to a system of ODE’s. For example, these invariants may -
be equalities (or inequalities in general) describing the conservation of total
energy, mass, or momentum of a system. Maintaining solution invariants in the
numerical solution of ODE’s can pose difficulties for aumerical ODE methods
[223], but may be essential to the stability of the system. Problems of this
type may be formulated as systems of DAE’s where the invariants are imposed
as algebraic constraints [117].

There is a large engineering literature devoted to the properties of the
system

2’ = Az + Bu
y = Cz+ Du

where A, B, C, D are constant matrices, z is the state, u is the control or
input, and y is the output or vector of observations. Notice that if we consider
a desired y as known and want to find = or u, then this system can be viewed
as the linear constant coefficient DAE in z and u

EHIHE I HE

Our final network example is derived from the equations describing a chem-
ical reactor [199]. A first-order isomerisation reaction takes place and the heat
generated is removed from the system through an external cooling circuit. The
relevant equations are

C' = Ki{Co-C)-R . {1.3.9a)
T = Ky(To—-T)+K,R—- Ks(T -T¢) "(1.3.9b)
0 = R-Ksexp (%{1)0 (1.3.9¢)
0= C-u [(1.3.94)

Here Co and To are the (assumed) known feed reactant concentration and feed
temperature, respectively. C and T are the corresponding quantities in the
product. R is the reaction tate per unit volume, T¢ is the temperature of the

&
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cooling medium (which can be varied), and the K; are constants. We shall con-
sider two variations of this problem later. The simpler one is (1.3.9a)-(1.3.9¢)
with Tc known and the state variables C, T, R. The more interesting one
is (1.3.9a)-(1.3.9d) where (1.3.9d) is a specified desired product concentration
and we want to determine the T (control) that will produce this C. In this
case, we obtain a semi-explicit DAE system with state variables C, T, R, T¢.
Even though these two problems turn out to be different in several respects
(for example, in the dimension of their solution manifolds), they can be stud-
jed from the same DAE model. This example again illustrates the flexibility
of working with a problem which is formulated as a DAE.

1.3.3 Model Reduction and Singular Perturbations

In a given model, there may be various small parameters. In an attempt to

simplify the model or obtain a first order approximation to its behavior, these

parameters may be set equal to zero. The resulting systemis often a DAE.
In the classical singular perturbation problem (1.3.10) with 0 < e € 1,

I, = f(x’ y’t’e)

ey g(z.y,t,€) (1.3.10)

setting € =, 0 leads to the reduced order model

g = f(f,y,t,o)
0 = g(=z,y,t,0). (1.3.11)

This semi-explicit DAE may be used if parasitics are to be ignored. Even if the
solution of (1.3.10) is sought for all ¢ > 0, the DAE (1.3.11) can often be solved
and the solution added to a boundary layer correction term corresponding to
a fast time scale to obtain a solution.

In general, there may be several small parameters, and the original equa-
tions may also be a DAE. As an example, consider the circuit (known as a
loaded degree-one Hazony section under small loading) described in [51,102].
This circuit has time-invariant linear resistors, capacitors, a current source,
and a gyrator. A gyrator is a 2-port device for which the voltage and current
at one port are multiples of the current and voltage at the other port. The
resistances R; are large since they model parasitic terms, and similarly the
capacitances are small. Letting G; = 1/R:, G = 1/R, g the gyration conduc-
tance, ¥ = is the current source, y = vz, T = [U],’l)g,i;;]T, we obtain, after
some algebraic simplification, the linear constant coefficient DAE

G 0 0 G ¢ 1 1
0 C,.-0{z+]| g G+G2 -1 |z=}0|u (1.3.12a)
c -C; 0 Gs3 -G3 -1 0 .

y=[0 1 0]a  (1.3.2b)
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Here we assume that G > 0, g > 0, C > 0. In this problem there are five
small parasitic parameters G, G2, G3, C2, C; and one small model parameter
G. The state dimension changes with G but all variations are easily examined
within the one DAE model (1.3.12) [51].

Another example of DAE’s arising from singular perturbation problems
appears in cheap control problems. A simple example is the quadratic regula-
tor problem mentioned earlier, where the control weighting matrix R depends
on a small parameter R(¢) and R(0) is either singular or of lower rank.

Problems such as (1.3.10) are often referred to as stiff differential equations.
It is well known that the solution of stiff differential equations, even for explicit
ODE’s, requires a special choice of numerical method. For example, explicit
methods require exceedingly small stepsizes for stability reasons, so implicit
methods are generally employed. The ¢ = 0 problem results when the stiffness
is pushed to the limit. It is not surprising then that parallels will be found in
the following chapters between the theory for the numerical solution of DAE’
and that for stiff differential equations.

1.3.4 Discretization of PDE’s

Solving partial differential equations (PDE’s) can lead to DAE’s. We shall
consider the method of lines and moving grids.

Numerical methods for solving PDE’s usually involve the replacement of
all derivatives by discrete difference approximations. The method of lines
(MOL) does this also, but in a special way that takes advantage of existing
software. For parabolic PDE’s, ihe typical MOL approach is to discretize the
spatial derivatives, for example by finite differences, and thus convert the PDE
system into an ODE initial value problem.

There are two important advantages to the MOL approach. First, it is
computationally efficient. The ODE software takes on the burden of time dis-
cretization and of choosing the time steps in a way that maintains accuracy
and stability in the evolving solution. Most production ODE software is writ-
ten to be robust and computationally efficient. Also, the person using a MOL
approach has only to be concerned with discretizing spatial derivatives, thus
reducing the work required to write a computer program.

Many MOL problems lead, either initially or with slight modification, to
an explicit ODE. However, many well posed problems of practical interest are
more easily handled as a DAE. As a simple first example of the MOL consider
the heat equation

9y 9%y

gt 0z?
defined on the region t > 0, 0 < z < 1 with boundary conditions given for
y(t,0) and y(t,1), and initial conditions given for y(0,z). Taking a umform
spatial mesh of Az, and mesh points z; = (j+1)Ax 1<75<(1/Az)-1=
and using centered differences, we obtain the semi-explicit DAE in the va,na,bles



