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Preface to the |
Springer Edition

This book was written as an introductory text for a one-semester course
and, as. such, it is far from a comprehensive reference work. Its lack of
completeness is now more apparent than ever since, like most branches of
mathematics, knot theory has expanded enormously during the last fifteen
years. The book could certainly be rewritten by including more material and
also by introducing topics in a more elegant and up-to-date style. Accomplish-
ing these objectives would be extremely worthwhile. However, a significant
revision of the original work along these lines, as opposed to writing a new
book, would probably be a mistake. As inspired by its senior author, the late
Ralph H. Fox, this book achieves qualities of effectiveness, brevity, elementary
character, and unity. These characteristics would be jeopardized, if not lost,
in a major revision. As a resul, the book is being republished unchanged,
except for minor corrections. The most important of these occurs in Chapter
I11, where the old sections 2 and 3 have been interchanged and somewhat
modified. The original proof of the theorem that a group is free if and only
if it is isomorphic to F[«/] for some alphabet o/ contained an error, which
has been corrected using the fact that equivalent reduced words are equal.

I would like to include a tribute to Ralph Fox, who has been called the
father of modern knot theory. He was indisputably a first-rate mathematician
of international stature. More importantly, he was a great human being. His
students and other friends respected him, and they also loved him. This
edition of the book is dedicated to his memory.

Richard H. Crowell

Dartmouth College
1977
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Preface

Knot theory is a kind of geometry, and one whose appeal is very direct
- because the objects studied are perceivable and tangible in everyday physical
space. It is a meeting ground of such diverse branches of mathematics as
group theory, matrix theory, number theory, algebraic geometry, and
differential geometry, to name some of the more prominent ones. It had its
origins in the mathematical theory of electricity and in primitive atomic
physics, and there are hints today of new applications in certain branches of
chemistry.! The outlines of the modern topological theory were worked out
by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As
a subfield of topology, knot theory forms the core of a wide range of problems
dealing with the position of one manifold imbedded within another.

This book, which is an elaboration of a series of lectures given by Fox at
Haverford College while a Philips Visitor there in the spring of 1956, is an
attempt to make the subject accessible to everyone. Primarily it is a text-
book for a course at the junior-senior level, but we believe that it can be used
with profit also by graduate students. Because the algebra required is not
the familiar commutative algebra, a disproportionate amount of the book
is given over to necessary algebraic preliminaries. However, this is all to the
good because the study of noncommutativity is not only essential for the
development of knot theory but is itself an important and not overcultivated
field. Perhaps the most fascinating aspect of knot theory is the interplay
between geometry and this noncommutative algebra.

For the past ‘thirty years Kurt Reidemeister’s Ergebnisse publication
Knotentheorie has been virtually the only book on the subject. During that
time many important advances have been made, and moreover the combina-
torial point of view that dominates Knotentheorie has generally given way
to a strictly topological approach. Accordingly, we have emphasized the
topological invariance of the theory throughout.

There is no doubt whatever in our minds but that the subject centers
around the concepts: knot group, Alexander matriz, covering space, and our
presentation is faithful to this point of view. We regret that, in the interest
of keeping the material at as elementary a level as possible, we did not
introduce and make systematic use of covering space theory. However, had
we done so, this book would have become much longer, more difficult, and

! H.L. Frisch and E. Wasserman, ""Chemical Topology,” J. Am. Chem. Soc.; 88 (1961)
3789-3795 FESEPRRU RO ot L SR T .
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viii PREFACE

presumably also more expensive. For the mathematician with some maturity,
for example one who has finished studying this book, a survey of this central
core of the subject may be found in Fox’s “A quick trip through knot theory”
(1962).1

The bibliography, althbugh not complete, is comprehensive far beyond the
needs of an introductory text. This is partly because the field is in dire need
of such a bibliography and partly because we expect that our book will be
of use to even sophisticated mathematicians well beyond their student days.
To make this bibliography as useful as possible, we have included a guide
to the literature.

Finally, we thank the many mathematicians who had a hand in reading
and criticizing the manuscript at the various stages of its development.
In particular, we mention Lee Neuwirth, J. van Buskirk, and R. J. Aumann,
and two Dartmouth undergraduates, Seth Zimmerman and Peter Rosmarin.
We are also grateful to David 8. Cochran for his assistance in updating the
bibliography for the third printing of this book.

* 8ee Bibliography
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Prerequisites

For an intelligent reading of this book a knowledge of the elements of
modern algebra and point-set topology is sufficient. Specifically, we shall
assume that the reader is familiar with the concept of a function (or mapping)
and the attendant notions of domain, range, image, inverse image, one-one,
onto, composition, restriction, and inclusion mapping; with the concepts
of equivalence relation and equivalence class; with the definition and
elementary properties of open.set, closed set, neighborhood, closure, interior,
induced topology, Cartesian product, continuous mapping, homeomorphism,
compactness, connectedness, open cover(ing), and the Euclidean n-dimen-
sional space R"; and with the definition and basic properties of homomor-
phism, automorphism, kernel, image, groups, normal subgroups, quotient
groups, rings, (two-sided) ideals, permutation groups, determinants, and
matrices. These matters are dealt with in many standard textbooks. We may,
for example, refer the reader to A. H. Wallace, An Iniroduction to Algebraic
Topology (Pergamon Press, 1957), Chapters I, II, and III, and to G. Birkhoff
and S. MacLane, 4 Survey of Modern Algebra, Revised Edition (The Mac-
millan Co., New York, 1953), Chapters III, §§1-3;7, 8; VI, §§4-8, 11-14; VII,
§6; X, §81, 2; XIII, §§1-4. Some of these concepts are also defined in the
index.

In Appendix I an additional requirement is a knowledge of differential and
integral calculus.

The usual set theoretic symbols €, =, >, =, U, N, and — are used. For
the inclusion symbol we follow the common convention: A < B means that
P € B whenever p € 4. For the image and inverse image of 4 under f we
write either f4 and f 14, or f(4) and f ~(4). For the restriction of f to 4 we
write f | 4, and for the composition of two mappingsf: X - Yandg: ¥ — 2
we write gf.

When several mappings connecting several sets are to be considered at the
same time, it is convenient to display them in a (mapping) diagram, such as

x—1sy g

7° :
X2y or b b A
g

If each element in each set displayed in a diagram has at most one image ele-
ment in any given set of the diagram, the diagram is said to be conssstent.

1



2 PREREQUISITES

Thus the first diagram is consistent if and only if gf = 1 and fg = 1, and the
second diagram is consistent if and only if bf = a and cg = b (and hence

ogf = a).
The reader should note the following “‘diagram-filling”’ lemma, the proof of

which is straightforward.

If h: @— H and k: G— K are homomorphisms and h is onio, there
exists a (necessarily unigue) homomorphism f: H — K making the diagram
r2

G
/ \ ‘
h R k
F—1 g
consistent if and only if the kernel of h is contained in the kernel of k.



CHAPTER I

Knots and Knot Types

1. Deflnition of a knot. Almost everyone is familiar with at least the
simplest of the common knots, e.g., the overhand knot, Figure 1, and the
figure-eight knot, Figure 2. A little experimenting with a piece of rope will
convince anyone that these two knots dare different: one cannot be trans-
formed into the other without passing a loop over one of the ends, i.e.,without
“tying” or ‘“‘untying.” Nevertheless, failure to change the figure-eight into
the overhand by hours of patient twisting is no proof that it can’t be done.
The problem that we shall consider is the problem of showing mathematically
that these knots (and many others) are distinct from one another.

S (OSor

Figure 1 Figure 2

/

Mathematics never proves anything about anything except mathematics,
and & piece of rope is a physical object and not a mathematical one. So before
worrying about proofs, we must have a mathematical definition of what a
knot is and another mathematical definitibn of when two knots are to be
considered the same. This problem of formulating a mathematical model
arises whenever one applies mathematics to a physical situation. The defini-
tions should define mathematical objects that approximate the physical
objects under consjideration as closely as possible. The model may be good or
bad according as the correspondence between mathematics and reality is
good or bad. There is, however, no way to prove (in the mathematical sense,
and it is probably only in this sense that the word has a precise meaning) that
the mathematical definitions describe the physical situation exactly.

Obviously, the figure-eight knot can be transformed into the overhand
knot by tying and untying—in fact all knots are equivalent if this operation

.isallowed. Thus tying and untying must be prohibited either in the definition
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4  ENOTS AND ENOT TYPES Chap. I

of when two knots are to be considered the same or from the beginning in the
very definition of what a knot is. The latter course is easier and is the one
we shall adopt. Essentially, we must get rid of the ends. One way would be to
prolong the ends to infinity; but a simpler method is to splice them together.
Accordingly, we shall consider a knot to be a subset of 3-dimensional space
which is homeomorphic to a circle. The formal definition is: K is a knot if there
exists a homeomorphism of the unit circle ¢ into 3.dimensional space R3
whose image is K. By the circle C is meant the set of points (z,y) in the plane
R? which satisfy the equation 22 + y2 = 1.

The overhand knot and the figure-eight knot are now pictured as in Figure
3 and Figure 4. Actually, in this form the overhand knot is often called the
clover-leaf knot. Another common name for this knot is the trefoil. The figure-
eight knot has been called both the four-knot and Listing’s knot.

g @

Figure 3

We next consider the question of when two knots K, and K, are to be con-
sidered the same. Notice, first of all, that this is not a question of whether or
not K, and K, are homéomorphic. They are both homeomorphic to the unit
circle and, consequently, to each other. The property of being knotted is not
an intrinsic topological property of the space consisting of the points of
the knot, but is rather a characteristic of the way in which that space is
imbedded in R®. Knot theory is a part of 3-dimensional topology and not of
1-dimensional topology. If a piece of rope in one position is twisted into
another, the deformation does indeed determine a one-one correspondence
between the points of the two positions, and since cutting the rope is not
allowed, the correspondence is bicontinuous. In addition, it is natural to
think of the motion of the rope as accompanied by a motion of the surrounding
air molecules which thus determines a bicontinuous permutation of the points
of space. This picture suggests the definition: Knots K, and K, are equivalent
if there exists a homeomorphism of R® onto itself which maps K, onto K,.



Sect. 2 TAME VERSUS WILD KNOTS 5

It is & triviality that the relation of knot equivalence is a true equivalence
relation. Equivalent knots are said to be of the same type, and each equiva-
lence class of knots is a knot type. Those knots equivalent to the unknotted
circle 22 4 y2 = 1, z = 0, are called ¢rivial and constitute the trivial type.!
Similarly, the type of the clover-leaf knot, or of the figure-eight knot is
defined as the equivalence class of some particular representative knot. The
informal statement that the clover-leaf knot and the figure-eight knot are
different is rigorously expressed by saying that they belong to distinct knot

types.

2. Tame versus wild knots. A polygonal knot is one which is the union of a
finite number of closed straight-line segments called edges, whose endpoints
are the vertices of the knot. A knot is tame if it is equivalent to a polygonal
knot; otherwise it is wild. This distinction is of fundamental importance. In
fact, most of the knot theory developed in this book is applicable (as it stands)
only to tame knots. The principal invariants of knot type, namely, the ele-
mentary ideals and the knot polynomials, are not necessarily defined for a
wild knot. Moreover, their evaluation is based on finding a polygonal repre-
sentative to start with. The discovery that knot theory is largely confined to
the study of polygonal knots may come as a surprise—especially to the reader
who_approaches the subject fresh from the abstract generality of point-set
topology. It is natural to ask what kinds of knots other than polygonal are
tame. A partial answer is given by the following theorem.

(2.1) If a knot parametrized by arc length is of class C' (i.e., is continuously
differentiable), then it is tame.

A proof is given in Appendix I. It is complicated but straightforward, and
it uses nothing beyond the standard techniques of advanced calculus. More
explicitly, the assumptions on K are that it isrectifiable and given asthe image
of a vector-valued function p(s) = (2(3), y(s), z(s)) of arc length s with con-
tinuous first derivatives. Thus, every sufficiently smooth knot is tame.

It is by no means obvious that there exist any wild knots. For example,
no knot that lies in a plane is wild. Although the study of wild knotsis a corner
of knot theory outside the scope of this book, Figure 5 gives an example
of a knot known to be wild.2 This knot is a remarkable curve. Except for the
fact that the number of loops increases without limit while their size decreases
without limit (as is indicated in the figure by the dotted square about p), the

! Any knot which lies in a plane is necessarily trivial. This is a well-known and deep
theorem of plane topology. See A. H. Newman, Elements of the Topology of Plane Sets of
Points, Second edition (Cambridge University Press, Cambridge, 1951), p. 173.

* R. H. Fox, “A Remarkable Simple Closed Curve,” Annals of Mathematics, Vol. 50
(1949), pp. 264, 2686, - . s
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knot could obviously be untied. Notice also that, except at the single point
P, it is as smooth and differentiable as we like.

3. Knot projections. A knot K is usually specified by a projection; for
example, Figure 3 and Figure 4 show projected images of the clover-leaf knot
and the figure-eight knot, respectively. Consider the parallel projection

P:. RS R3S

defined by P(z,y,2) = (z,4,0). A point p of the image PK is called a
multiple point if the inverse image #1p contains more than one point of K.
The order of p € PK is the cardinality of (#-1p) N K. Thus, a double point
is a multiple- point of order 2, a triple point is one of order 3, and so on.
Multiple points of infinite order can also occur. In general, the image K
may be quite complicated in the number and kinds of multiple points present.
It is possible, however, that K is equivalent to another knot whose projected
image is fairly simple. For & polygonal knot, the criterion for being fairly
simple is that the knot be in what is called regular position. The definition is
as follows: a polygonal knot K is in regular position if: (i) the only multiple
points of K are double points, and there are only & finite number of them;
(ii) no double péint is the image of any vertex of K. The second condition
insures that every double point depicts a genuine crossing, as in Figure 6a.
The sort of double point shown in Figure 6b is prohibited.

/

Figure 6a Figure 6b



Sect. 3 KNOT PROJECTIONS 7

Each double point of the projected image of a polygonal knot in regular
position is the image of two points of the knot. The one with the larger

z-coordinate is called an overcrossing, and the other is the corresponding
undercrossing.

(3.1) Any polygonal knot K is equivalent under an arbitrarily small rotation
of R® to a polygonal knot in regular position.

Proof. The geometric idea is to hold K fixed and move the projection.
Every bundle (or pencil) of parallel lines in R? determines a unique parallel
projection of R3 onto the plane through the origin perpendicular to the bundle.
We shall assume the obvious extension of the above definition of regular
position so that it makes sense to ask whether or not K is in regular position
with respect to any parallel projection. It is convenient to consider R? as a
subset? of a real projective 3-space P3. Then, to every parallel projection we
associate the point of intersection of any line parallel to the direction of
projection with the projective plane P2 at infinity. This correspondence is
clearly one-one and onto. Let Q be the set of all points of P2 corresponding to
~ projections with respect to which K is not in regular position. We shall show
that @ is nowhere dense in P2. It then follows that there is a projection &,
with respect to which K is in regular position and which is arbitrarily close
to the original projection & along the z-axis. Any rotation of R® which
transforms the line 2,-1(0,0,0) into the z-axis will suffice to complete the proof.

In order to prove that  is nowhere dense in P2, consider first the set of all
straight lines which join a vertex of K to an edge of K. These intersect P%in a
finite number of straight-line segments whose union we denote by @,. Any
projection corresponding to a point of P? — @, must obviously satisfy con-
dition (ii) of the definition of regular position. Furthermore, it can have at
most a finite number of multiple points, nd one of which is of infinite order.
It remains to show that multiple points of order » > 3 can be avoided, and
this is done as follows. Consider any three mutually skew straight lines, each
of which contains an edge of K. The locus of all straight lines which intersect
these three is a quadric surface which intersects P? in a conic section.
(See the reference in the preceding footnote.) Set @, equal to the union of all
such conies. Obviously, there are only a finite number of them. Furthermore,
the image of X under any projection which corresponds to some point of
P2 — (@, V@,) has no multiple points of order n > 3. We have shown that

PP~ (@ UQ) <= P—Q.

Thus Q is a subset of Q, U Q,, which is nowhere dense in P2, This completes
the proof of (3.1).

? For an account of the concepts used in this proof, see O. Veblen and J. W. Young,
Projective Geometry (Ginn and Company, Boston, Massachusetts, 1910), Vol. 1 pp. 11,
299, 301.
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Thus, every tame knot is equivalent to a polygonal knot in regular positif)n.
This fact is the starting point for calculating the basic invariants by which

different knot types are distinguished.

4. Isotopy type, amphicheiral and invertible knots. This section is not a
prerequisite for the subsequent development of knot theory in this book.
The contents are nonetheless important and worth reading even on the first
time through.

Our definition of knot type was motivated by the example of a rope in
motion from one position in space to another and accompanied by a displace-
ment of the surrounding air molecules. The resulting definition of equivalence
of knots abstracted from this example represents a simplification of the
physical situation, in that no account is taken of the motion during the transi-
tion from the initial to the final position. A more elaborate construction,
which does model the motion, is described in the definition of the isotopy
type of a knot. An isotopic deformation of a topological space X is a family of
homeomorphisms k,, 0 < ¢ < 1, of X onto itself such that kg is the identity,
i.e., ky(p) = p for all p in X, and the function H defined by H(t,p) = hy(p) is
simultaneously continuous in ¢ and ». This is a special case of the general
definition of a deformation which will be studied in Chapter V. Knots K,
and K, are said to belong to the same isotopy type if there exists an isotopic
deformation {#,} of B3 such that b, K, — K o Theletter ¢ is intentionally chosen
to suggest time. Thus, for a fixed point p € R3, the point &(p) traces out, so to
speak, the path of the molecule originally at p during the motion of the rope
from its initial position at K, to K,.

Obviously, if knots K, and K, belong to the same isotopy type, they are
equivalent. The converse, however, is false. The following discussion of
orientation serves to illustrate the difference between the two definitions.

Every homeomorphism & of B8 onto itself is either orientation preserving
or orientation reversing. Although a rigorous treatment of this concept is
usually given by homology theory,? the intuitive idea is simple. The homeo-
morphism k preserves orientation if the image of every right (left)-hand screw
is again a right (left)-hand screw; it reverses orientation if the image of every
right {left)-hand screw is a left (right)-hand screw. The reason that there is
no other possibility is that, owing to the continuity of k, the set of points of
B3 at which the twist of a screw is preserved by % is an open set and the same
is true of the set of points at which the twist is reversed. Since k is & homeo-

4 A homeomorphism & of the n-sphere S", n > 1, onto itself is orientation preserving or
reversing according as the isomorphism k_: H,(S") — H (S ") is or is not the identity. Let
8™ = R"U{w} be the one point compactification of the real Cartesian n-space R™. Any

- homeomorphism % of R* onto itself has a unique extention to a homeomorphism k of
8% = B"U{o0} onto itself defined by k| R* = h and k(w®) = oo. Then, A is orientation
preserving or reversing according as k is orientation preserving or reversing.
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" morphism, every point of B2 belongs to one of these two disjoint sets; and
since B3 is connected, it follows that one of the two sets is empty. The com-
position of homeomorphisms follows the usual rule of parity:

by hy hihy
preserving preserving preserving
reversing preserving reversing
preserving reversing reversing
reversing reversing preserving

Obviously, the identity mapping is orientation preserving. On the other
hand, the reflection (z,y,2) — (z,y,—~z) is orientation reversing. If h is a
linear transformation, it is orientation preserving or reversing according as its
determinant is positive or negative. Similarly, if both % and its inverse are C*
differentiable at every point of B3, then h preserves or reverses orientation
according as its Jacobian is everywhere positive or everywhere negative.

Consider an isotopic deformation {k,} of R3. The fact that the identity is
orientation preserving combined with the continuity of H(t,p) = h(p),
suggests that h, is orientation preserving for every ¢ in the interval 0 < ¢ < 1.
This is true.5 As a result, we have that a necessary condition for two knots to
be of the same isotopy type is that there exist an orientation preserving
homeomorphism of R® on itself which maps one knot onto the other.

A knot K is said to be amphicheiral if there exists an orientation reversing
homeomorphism % of R? onto itself such that AK — K. An equivalent for-
mulation of the definition, which is more appealing geometrically, is provided
by the following lemma. By the mirror vmage of a knot K we shall mean the
image of K under the reflection @ defined by (z,y,2) — (2,9, =2). Then,

(4.1) A knot K is amphicheiral if and only if there exists an orientation
preserving homeomorphism of R3 onto itself which maps K onto its mirror image.

Proof. If K is amphicheiral, the composition 2% is orientation preserving
and maps K onto its mirror image. Conversely, if &’ is an orientation preserv-
ing homeomorphism of B3 onto itself which maps K onto its mirror image, the
composition #h’ is orientation reversing and (#h')K = K.

It is not hard to show that the figure-eight knot is amphicheiral. The
experimental approach is the best; a rope which has been tied as a figure-eight
and then spliced is quite easily twisted into its mirror image. The operation is
illustrated in Figure 7. On the other hand, the clover-leaf knot is not amphi-

* Any isotopic deformation {h,}, 0 < ¢ < 1, of the Cartesian n-space R" definitely
possesses & unique extension to an isotopic deformation {k:}, 0 < ¢t < 1, of the n-sphere
S», ie., k| R* = h, and k(o0) = . For each ¢, the homeomorphism &, is homotopic to
the identity, and so the induced isomorphism (k,), on H,(S") is the identity. It follows
that h, is orientation preserving for all £ in 0 < ¢ < 1. (See also footnote 4.) }
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cheiral. In this case, experimenting with a piece of rope accomplishes nothing
except possibly to convince the skeptic that the question is nontrivial.
Actually, to prove that the clover-leaf is not amphicheiral is hard and requires
fairly advanced techniques of knot theory. Assuming this result, however, we
have that the clover-leaf knot and its mirror image are equivalent but not of
‘the same isotopy type.

It is natural to ask whether or not every orientation preserving homeo-
morphism f of R® onto itself is realizable by an isotopic deformation, i.e.,
given f, does there exist {h,}, 0 <t < 1,suchthatf = h,? If the answer were
no, we would have a third kind of knot type. This question is not an easy one.
The answer is, however, yes.%

Just as every homeomorphism of R? onto itself either preserves or reverses
orientation, so does every homeomorphism f of a knot K onto itself. The
geometric interpretation is analogous to, and simpler than, the situation in
3.dimensional space. Having prescribed a direction on the knot, f preserves or
reverses orientation according as the order of points of X is preserved or re-
versed under f. A knot K is called invertible if there exists an orientation pre-
serving homeomorphism A of R® onto itself such that the restriction & | K
is an orientation reversing homeomorphism of K onto itself. Both the clover-

® (. M. Fisher, *“On the Group of all Homeomorphisms of & Manifold,” T'ransactions of
the American Mathematical Society, Vol. 87 (1860), pp. 183-212,



