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PREFACE

Sirice Bode published his classical text “Network Arialysis and Feedback Amplifie
Design” in 1945, very few books have been written that treat the subject in any
reasonable depth. The purpose of this book is to bridge this gap by providing an in-
depth, up-to-date, unified, and comprehensive teatmént of the fundamentals of the
theory of active networks and its applications to feedback amplifier design. The guid-
ing light throughout has been to extract the essence of the theory and to discuss the
topics that are of fundamental importarice and that. will transcend the advent of new
devices and design tools. Intended primarily as a text in nétwork theory in electrical
engineering for first-year graduate students, the book is also suitable as a reference for
researchers and practicing engineers in industry. In selécting the level of presentation,
considerable attention has been given to the fact that many readers may be encounter-
ing some of these topics for the first time. Thus, basi¢ introductoty material has been
included. The background required is the usual undérgraduate basic courses in circuits
and electronics as well as the ability to handle mattices. :

The book can be conveniéntly divided into threé parts. The first part, cornprising
the first three chapters, deals with general network analysis. The second part, com-
posed of the next four chapters, is concerned with feedback amplifier theory. Fhe third
part, consisting of the last two chapters, disCusses the state-space and topological
analyses of active networks and their relations to feedback theory.

Chapter 1 introduces many fundamental concepts used in the study of linéar active
networks. We start by dealing with general n-port fetworks and define passivity in
terms of the universally encountered physical quantities time and energy. We then
translate the time-domain passivity criteria into the equivalent frequency-domain
passivity conditions. Chapter 2 presents a useful description of the external behavior
of a multiterminal network in terms of the indefinite-admittance matrix and demon-
strates how it can be employed effectively for the computation of network functions.
The significance of this approach is that the indefinité-admiittance matrix can usually
be written down directly from the network by inspection and that the transfer furictions
can be expressed compactly as the ratios of the first-and/or second-order cofactors of
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vili PREFACE

the elements of the indefinite-admittance matrix. In Chapter 3 we consider the special-
ization of the general passivity condition for n-port networks in terns of the more
immediately useful two-port parameters. We introduce various types of power gains,
sensitivity, and the notion absolute stability as opposed to potential instability.

Chapters 4 and 5 are devoted to a study of single-loop feedback amplifiers. We
begin the discussion by considering the conventional treatment of feedback amplifiers
based on the ideal feedback model and analyzing several simple feedback networks.
We then present in detail Bode's feedback theory, which is based on the concepts of
retumn difference and null return difference. Bode’s theory is formulated elegantly and
compactly in terms of the first- and second-order cofactors of the elements of the
indefinite-admittance matrix, ‘and it is applicable to both simple and complicated
networks, where the analysis by conventional method for the latter breaks down. We
show that feedback may be employed to make the gain of an amplifier less sensitive
to variations in the parameters of the active components, to control its transmission
and driving-point properties, to reduce the effects of noise and nonlinear distortion,
and to affect the stability or instability of the network. The fact that return difference
can be measured experimentally for many practical amplifiers indicates that we can
include all the parasitic effects in the stability study and that stability problems can be
reduced to Nyquist plots.

The application’of negative fwdback in an amplifier improves its overall per-
formance. However, we are faced with the stability problem in that, for sufficient
amount of feedbaek, at some frequency the amplifier tends to oscillate and becomes
unstable. Chapter 6 discusses various stability criteria and investigates several ap-
proaches to the stabilization of feedback amplifiers. The Nyquist stability criteria, the
Bode plot, the root-locus technique, and root sensitivity are presented. The relationship
between gain and phase shift and Bode's design theory is elaborated. Chapter 7 studies
the multiple-loop feedback amplifiers that contain a multiplicity of inputs, outputs, and
feedback loops. The concepts of retumn difference and nuil return difference for a
single controlled source arc now generalized to the notions of return difference matrix
and null return difference matrix for a multiplicity of controlled sources. Likewise, the
scalar sensitivity function is generalized to the sensitivity matrix, and formulas for
computing multiparameter sensitivity functions are derived.

In Chapter 8, we formulate the petwork equations in the time domain as a system
of first-order differential equations that govern the dynamic behavior of a network.
The advantages of representing the network equations in this form are numerous. First
of all, such a system has been widely studied in mathematics and its solution, both
analytical and numerical, is known and readily available. Secondly, the representation
can easily and naturally be extended to time-varying and nonlifiear networks. In fact,
nearly all time-varying and nonlinear networks are characterized by this approach.
Finally, the first-order differential equations are easily programmed for a digital
computer Qr simulated on an analog computer. We then formulate the general feedback
theory in terms of the coefficient matrices of the state equations of a multiple-input,
multiple-output and multiple-loop feedback amplifier, and derive expressions relating
the zeros and poles of the determinants of the return difference matrix and the null
return difference matrix to the cigenvalues of the coefficient matnces of the state
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. equations under certain conditions. Finally, in Chapter 9 we study topological analysis
of active networks and conditions under which there is a unique solution. These
conditions are especially useful in computer-aided network analysis when a numerical
solution does not converge. They help distinguish those cases where a network does
not possess a unique solution from those where the fault lies with the integration
technique. Thus, when a numerical solution does not converge, it is important to
distinguish network instability, divergence due to improper numerical integration, and
divergence due to lack of the existence of a unique solution.

The book is an outgrowth of notes developed over the past twenty-five years
while teaching courses on active network theory at the graduate level at Ohio Uni-
versity and University of Illinois at Chicago. There is little difficulty in fitting the book
into a one-semester or two-quarter course in active network theory. For example, the
first four chapters plus some sections of Chapters 5, 6 and 8 would be ideal for a one-
semester course, whereas the entire book can be covered adequately in a two-quarter
course.

A special feature of the book is that it bridges the gap between theory and
practice, with abundant examples showing how thedry solves problems. These ex-
. amiples are actual practical problems, not idealized illustrations of the theory. A rich
variety of problems has been presented at the end of each chapier, some of which are
rolitine applications of results derived in the text. Others, however, require consid- -
erable extension of the text material. In all there are 286 problems.

Much of the material in the book was developed from my research. It is a pleasure
to acknowledge publicly the research support of the National Science Foundation and
the University of Illinois at Chicago through the Senior University Scholar Program.
I am indebted to many graduate students who have made valuable contributions to this
book. Special thanks are due to my doctoral student Hui Tang, who helped proofread
Chapters 8 and 9, and to my secretary, Ms. Barbara Wehner, who assisted me in
preparing the index. Finally, I express my appreciation to my wife, Shiao-Ling, for her
patience and understanding during the preparation of the book.

Wai-Kai Chen

Naperville, Illinois
January 1, 1991
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CHAPTER

e ONE
CHARACTERIZATIONS OF NETWORKS

Over the past two decades, we have witnessed a rapid development of solid-state
technology . with its apparently unending proliferation of new devices. Presently
available solid-state devices such as the transistor, the tunnel diode, the Zener diode,
and the varactor diode have already replaced the old vacuum tube in most practical
network applications. Moreover, the emerging field of integrated circuit technology
threatens to push these relatively recent inventions into-obsolescence. In order to
understand fully the network properties and limitations of solid-state devices and to be
able to cope with the apphcauons of the new devices yet to come, it has become
increasingly necéssary to emphasize the fundamentals of active network theory that
will transcend the advent of new devices and design tools.

The purpose of this chapter is to introduce many fundamental ¢oncepts used in
the study of linear active networks. We first introduce the concepts of portwise
linearity and time invariance. Then we define passivity in terms of the universally
encountered physical quantities fime and enmergy, and show that causality is a\
consequence of linearity and passivity. This is followed by a brief review of the
general characterizations of n-port networks in the frequency domain. The
translation of the time-domain passivity criteria into the equivalent frequency-
domain passivity conditions is taken up next. Finally, we introduce the discrete-
frequency concepts of passivity. The significance of passivity in the study of active
networks is that passivity is the formal negation of activity.

1.1 LINEARITY AND NONLINEARITY

A network is a structure comprised of a finite number of interconnected elements
with a set of accessible terminal pairs called ports at which voltages and currents

1
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2 ACTIVE NETWORK ANALYSIS

Ymay be measured and the transfer of electromagnetic energy into or out of the
structure can be made. Fundamental to the concept of a port is the assumption that
ythe instantaneous current entering one terminal of the port is always equal to the
instantanegus ‘cumrent leaving the other terminal of the port. A network with n such
accessible ports is called an .n-port network or simply an n-port, as depicted
symbolically in Fig. 1.1. In this section we review briefly the concepts of linearity
and nonlinearity and introduce the notion of portwise linearity and nonlinearity.
Refer to the géneral representation of an n-port network N of Fig. 1.1. The

port voltages v () and currents ix() (where k=1, 2,..., n) can be conveniently
represented by the port-voltage and port-current vectors as
v(0)= [u (@), v @)...., uO) (1.19)
i(0) = [0(0), (D), . ... (D))’ (1.18)

respectively, where the prime denotes the matrix transpose. There are 2n port
signals, n port-voltage signals vi(t), and n port-current signals i (f), and each port is
associated with two signals vg(f) and ix(#). The port vestors v(¢) and i(r) that can be
supported by the n-port network N are said to constitute an admissible signal pair
for the n-port network. Any n independent functions of these 2n port signals,
taking one from each of the n ports, may be regarded as the input or excitation and
the remaining n signals as the output or response of the n-port network. In Fig, 1.1
we may take, for example, i) (t), i»(t),. .., ix(t), vg+1(D); ..., Us(2) to De the
input or excitation signals. Then v,(?), v, (t), ..., Vk(t), ix4+1(0), . ., in(r) are the

i)

[0 s s, |

* g .

v, {t) .

['o ————

A (t_)_.

v, () T : -

0.—-:—-,-——-——'—\ -
: n-Port network ¥
[ J

inlt)

vplt)

Figure 1.1 The general symbolic representation
of an n-port network.
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CHARACTERIZATIONS OF NETWORKS 3

iy

ixlt)

n-Port network N

Yk 4y (¢)

Yn “)
: Figure 1.2 A specific input excitation of
an n-port petwork.

output or response signals. This input-output or excitation-response situation is
shown in Fig. 1.2. To facilitate our discussion, let u(r) be the excitation vector
associated with the excitation signals, and y(¢) the response veceor associated with
the response signals. For the excitation-response situation of Flg 1.2, the excitation
and response vectors are given by

w(e) = [ (), 100 - . ., ik, vk - -, U@ (1.22)
YO = [ (0, va(@®, ..., u(®), (k410 .. ., in(D]) (1.2b)

respectively. When we speak of zero excitation of an n-port, we mean that every
excitation signal is zero; that is, u(t) = 0. On the other hand, a nonzero excitation is
meant a set of # excitation signals, not all of them being zero; that is, u(r) # 0.
Generally speaking, 2 network is said to be linear if the superposition principle
holds. This implies that the response resulting from all independent sources acting
* simultaneously is equal to the sum of the responses resulting from each independent
source acting one at a time. In this sense, any network comprised of linear network
- elements (linear resistors, linear inductors, linear capacitors, linear transformers, or
linear controlled sources) and independent sources is a linear network. Thus, to
verify the linearity of a network by this definition, we must have the complete
knowledge of the internal structure of the network. For an n-port, the accessible
- part of the network may be only at its n ports. For this reason, the above
definition of linearity- may not be adequate for an n-port. For our purposes,
we introdyce, in addition to the above definition, the notation of portwise
linearity.




4 ACTIVE NETWORK ANALYSIS

Definition 1.1: Linearity and nonlinearity An n-port network is said to be
portwise linear or simply linear if the superposition principle holds at its n ports.
An n-port is portwise nonlinear ot simply nonlinear if it 'is not portwise linear,

In other words, if y,(r) and y,(¢) are the responses of the excitations ,(¢) and
up(r) of an n-port, respectively, then the n-port is portwise linear if and only if for
any choice of real scalars a and B, the vector y(r) = ay,(f) + fy,(r) represents the
response of the excitation u(z) = auy(t) + fuy(r).

The network of Fig. 1.3 is linear in the usual sense.. Let us form a one-port
from this network as shown in Fig. 1.4. The port voltage and current are described
by the equation

o= (R + 2R )i+ R E)

Suppose that we take i(t) to be the excitation and let iy(f) =iy(r)=1 A be two
excitations. Assume, for simplicity, that a=pg=1. Then the corresponding
responses U,(f), vy(t), and v, 4 (1) of the excitations iy(2), iy(t), and iy (f) + ip(t) are
given by

R,R; ER,

v() = up(@) =Ry + Erp- + a2  (140)
2R,Ry | _ER
veis@=2Ri + R Y RAR, (1.45)

Since Uy 4 () # vs(r) + vy(f), the one-port is nonlinear in the portwise sense.
Instead of forming a one-port, suppose that we form a two-port from the network
of Fig. 1.3. The resulting two-port network is shown in Fig. 1.5; its port voltages
and currents are characterized by .

[Ux (t)] _ [R. +R, R ] [:. (r)] 5)
U (3) R, Ry +Ry | [ ()]

It is straightforward to demonstrate that the two-port i now portwise linear. Thus,
a portwise nonlifiear network need not contain any no-ilinear network elements and
can often be rendered portwisé linear by extractlng intérnal sources at newly

formed ports.
As another example, consider the one-port of Fxg 1.6, in which the capacitor is

n,. . Ry
N “AAVW

vit) v R'

1)

Pigure 1.3 A linear network in
the usual sense.
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—————————— 1
. r R, R, |
M= I M A
+ ' l
| +
vie) I 2R, —e |
! T
- I |
O- ] |
|
b o e e —— —_

Figure 1.4 A nonlinear one-port network with £ % 0.

initially charged to a voltage vo(0+) = V,. The terminal relation of the one-port is
given by '

t

W)= Rilt) + & / i(x) dx + V, (1.6)

]

By following Eqs. (14), it- is easy to confirm that the one-port is portwise
nonlinear. Indeed, the presence of any independent sources or any initial conditions
on the energy-storing elements in an »-port ‘would render the n-port portwise
nonlinear. On the other hand, an n-port network comprised of linear network
elements with zero initial conditions and devoid of any independent sources is
always portwise linear. For example, in the one-port networks of Figs. 1.4 and 1.6,
if the independent source E and the initial yoltage V are set to zero, the resulting.
one-ports become portwise linear. '

From the examples discussed above, it is clear that a portwise nonlinear n-port
need not contain any nonlinear elements, but the presence of nonlinear elements
does not necessarily imply that the n-port is portwise nonlinear. Figure 1.7 is a
one-port comprised of two nonlinear resistors connected in series. The nonlinear
resistors are characterized by the equations

va(t) = in(r) — i3(2) (1.72)
iy (1) r—';,——-——n,——} I ()
o=t VWM—E=0
|
I
l X
v, (1) | R, . ; v, (e
| |
5 ' { 3
Lo ___0 =

Figure 1.5 A linear two-port newwork.
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L2

i) R
o - NN
+ -
iy
vit) CV,
- Figure 1.6 A nonlinear one-port neétwork with
(e nonzero initizl capacitor voltage.
vg(1) = iz(®) (1.78)
The port voltage and curtent are related by the equation
W) =i() (138)

showing that this one-port is equivalent to a 1-§2 resistor and thus is portwise linear.
Suppose that a two-port is formed from this one-port by connecting two wires
actoss one of the resistors as shown in Fig. 1.8. The resulting two-port becomes
portwise nonlinear.

- We emphasize the difference between the linearity of a network and the
portwise linearity of an n-port. Throughout the remainder of this book, we are
concerned mainly- with portwise linearity. For simplicity, the"word portwise will
usually be dropped as also indicated in Definition 1.1, and will be used only for
emphasis.

1.2 TIME INVARIANCE AND TIME VARIANCE

A network is said to be time-invariant if it contains no time-varying network
elements. Otherwise, it is called a time-varying network. Like those discussed in the
preceding section, if the port behavior of a network is the major concern, the above
definition may not be adequate for an n-port For this reason, we define portwise
time-invariance.

Definition 1.2: Portwise time-invariance and time variance An n-port*network is
said to be portwise time-invariant or simply time-invariant if, for every real finite
constant 7,

g () = up(t — 1) - (192)
it volt) = iglt) — R(t)
—t + —
C v
+ =
inlt) +
vie) r,ml vale) = 3t
Figure 1.7 A linear one-port net-
- - work comprised of two nonlinear
O resistors.




