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PREFACE

The current acoustical literature provides us with numerous data
and long tables concerning the sound absorption coefficient of the
various materials that are on the market. These data together with
the physical features of the material (the thickness of the layer,
the porosity, the diameter of the pores, its stiffness) provide the
skilled designer of absorbing materials with some idea ag to how
new materials can adequately be designed. In this book we have
tried to give the design a more scientific basis. The principles
underlying the wave propagation through media — porous or not —
are deseribed. The wave propagation through porous media has
been treated at considerable length, being of great importance for
the majority of absorbing materials. '

Except for the last chapter (VIII) all theoretical considerations
and measurements are confined te normal incidence of sound.

With a view to the increasing application of absorbing materials
behind perforated panels, due attention is paid to this subjeet
(ehapter VII).

The origin of the book has been a request of the editor to the
first author for a book on the subject of acoustical materials. The
latter wrote the text in the grim war winter of 19441945 when
all laboratory work was utterly impossible. Due to a serious shortage
of printing facilities the actual printing was delayed so muech that
it was considered necessary to review the text on account of the
publications that had become available since the war. At the first
author’s request the second author accepted the task to do this.
It turned out that this meant hardly less than rewriting the whole
text. Moreover the chapter on resonators was not included in the
original scheme and it due to the initiative of the second author.

As far as we know a book with a similar aim does not exist,
which may serve as a justification of adding a new book to the
extensive acoustical literature. Furthermore, the existence of the
latter may help to meet certain shortcomings in this book, of which
the authors are convinced there are. May it, nevertheless, turn
out to bhe valuable for the scientific manufacturer.

August 1949, C. ZWIKKER
C. W. KOSTEN
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CHAPTER 1

SIMPLE THEORY OF SOUND ABSORPTION BY-
HOMOGENEOUS LAYERS

§ 1 PROPAGATION CONBTANT AND WAVE IMPEDANCE

If we consider a plane sound wave travelling in the direetion
of the positive z-axis in a homogeneous isotropic medium extending
to infinity, the scund pressure depends upon the time ¢ and on
the distance xr as a damped sine:

p(x)r_—Acxpgjm(t—-f—)—nax‘ (1.01)

in which j2= —1, o ==2 - frequency, ¢ == velocity of propagation
of sound, and exp (...) is the well.known symbolical notation for
et-), At the site z==0 we have p(0) =A exp jof. Putting
m/C= B and o« + j8=1+y, we obtain for the damped sine the
shorter analytical form

p(z) =p(0) exp (— yz).

The constant vy, which, apart frem its dependence on o, is
determined by the nature of the medium is called the propagation
constant of this medium; its real part « is called the attenuation
constant and its imaginary part B the phase constant.

In the same way the velocity of specific volume displacement,
v, can be expressed by a similar formula

v(z) =v(0) exp (— yx),

in which the same constant y enters as in the formula for p,
because in a travelling wave the ratio p/v must be independent
of . We shall use the symbol v for the amount of material volume
passing through a unit surface in unit time, or the volume current
density. Only in a homogeneous medium (free air, compact solid
medium) i8 v identical with the material velocity. For example,
in a porous medium with rigid solid skeleton, the veloeity of
Sound absorbing materials 1



2 HOMOGENEOUS LAYERS 1

volume dispiacement ¢ is smaller than the velocity of the vibrating
air, the ratic being equal to that of the volume of the accessible
holes to the total volume of the mediwum, h. The constant h is
called the porosity or cavity factor and is one of the elementary
nroperties of the material which will play an important rdle in
the following pages.

In analogy to electrical practice the quotient

2(x) =p(x)/v(x) (1.02)
is called the specific acoustic impedance at the gite x. For an
unlimited medium, z must be independent of x. This impedance
is a material constant and is ealled its wave impedance, repre-
sented by W. As p and v are generally not in phase with each
other,” W is a complex quantity.

If a periodical pressure p(0) is applied at the site 1==0 of an
unhmited medium, the dependence of p and v upon z and t is
fully determined by the two quantities y and W. Thus y and W
fully determine the acoustical behaviour of the medium.

§ 2 IMPEDANCE OF A LAYER OF FINITE THICKNESS

We shall next consider a layer of uniform constitution, deter-
mined by the properties y and W, having a thickness I (z =0 to
z==1). Supposing it to be loaded at z=1 by the arbitrary
complex impedance z,, what is, then, the impedance 2, at z =10
(Fig. 1)? Part of the sound wave will be reflected at the end
z==1, so that p is the superpesition of an incoming wave and a
reflected wave:

p(z)=p;exp{y(l—z)} +p,exp{ —y (I—=x)}
v(z) =(pi/W)exp{y(l—=z)}— (p/W)exp { —y (I—uz) },

in which p; and p, are obviously the possibly complex pressure of
the incoming and the reflected wave at =1, just inside the layer.
The pressure adds as a scalar, the velocity as a vector; hence
the minus sign in the formula for v. As a boundary econdition
we have p(l)/v(l) =2,. With the aid of this it may easily be

verified that
Pe/Di= (2, — W)/(2, + W), (1.03)

and introducing this into the preceding equations one finds for
the impedance at the site x=10
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2, cosh vyl + W sinh yl
z, sinh y& + Weosh ! ’

7
nY

2, = (1.04)
a formula wellknown from the theory of electiie cables and filters.
This formula contains, as a special case, that of the medium extend-
ing to infinity. Then z,=W and the formula gives 2z, =2, = .
Another special case is that in which 2, = , in which case

2, = W coth yl. (1.05)

This latter case is of great importance for the investigations,
hecause this is the one which can easily he realized by loading
the shect of absorbent material with a completely hard back wall
Backing absorbent layers with a rigid wall is a normai way of

X

N

P2
' // 7, / Vo
7

77
g
T

Fig. 1
Layer bueked by an impedance z,

applying these materials in practice, so that this case is at the
same time of great practical importance.

The other limiting case is obtained by putting 2,=0. Then
(1.04) yields

2, == W tanh vl (1.06)

Because the impedance of a layer of air with a thickness of one
quarter of a wave length, backed by a rigid wall, is zero (see
(1.05) remembering that y==ju/c, since there is no damping),
this case can be realized by placing the absorbent layer at a
distance of i/, A from the rigid wall

It is now possible to caleulate in principle the acoustic im-
pedance of any combination of sheets of different characters and
lengths by the successive application of (1.04) (Fig. 2). One starts
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by computing 2,._, from 2z,, then 2,_, from #._,, and so on,
until finally 2, is found. The caleulation is complicated and tire-
some and might better be replaced by a geometrical method .

$ 3 WAVE IMPEDANCE W, OF FREE AIR

The theoretical deduction of the quantities W and y for any
medium is always accomplished in essentially the same way by
starting from the equation of motion for the vibrating medium
and from the equation of continuity (conservation of mass). We
shall now consider the simplest case, viz., that of free air withont
taking into acecount the effects of daniping.

The equation of motion is found by applying Newton's

Z‘} Zz Zn

3

Fig, 2
Suceessive computation of the impedance of a muiltilayer system
cquation (force == mass X scceleration) to a thin layer of air
of thickness dz: ‘ . :
op ov

— =0 o (1.07)

in which p, = density. The equation of continuity is

v 1 9 1 op
T T e W EaE (1.08)
in which

dp
dp/p,"

Eliminating ¢ by differentiating (1.07) with respect to =

1 See e.g., Feldtkeller, Vierpoltheorie and Chapter VI, §7. TFig. 67.
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and (1.08) with respect to ¢ and equating the expressions for
d%0/0 9t thus obtained, gives a differential equation for p

o°p g O°p
e (1.09)

Since we expect a solution of the form p = 4 exp (jol) exp (— y,x)
we may put: — 8/0r =y, and 9/9! = jw, 80 that (1.09) reduces to

z:__P_‘L 2
Yo KO‘” ’
from which we get
yo= = jo V po/K,. (1.10)

By comparing (1.10) with (1.01) we see that the physieal inter-
pretation of the constant V‘Ko/po is the velocity of propagation
¢, of sound waves in free air, the plus (minus) sign for y, having
to be taken for waves travelling in (opposite to) the direction of
the positive r-axis. Substituting this value of -— 8/dx together with
jo for 9/0t in either equation (1.07) or (1.08) yields for the wave
impedance

p/v=W,= V'K p,= p,c,. (1.11)

From (1.11) we learn that the wave impedance is real. By in-
serting the known values of p, and ¢, at room temperature it
appears that W, has the approximate valune of 420 kgm-2 gec 1
(42 egs). ,

If plane waves from the air impinge upon a wall of specific

impedance 2, reflection will take place; the ratio of the pressure
of the reflected wave to that of the incoming wave just before
the reflecting boundary is given by (1.03), which runs in the
present notation
rPr W,
R 2 s+ W, °
We shall call this ratio the complex reflection coefficient. By
squaring the absolute value one obtams the reflection ecoeffi-
cient for the energy, which is complementary to the absorption
coefficient -

(1.12)

i
ao::::l—A' '%
i

! T W, !' s (3.13)
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the index zero being added because this coefficient applies only
to normal incidence.

‘What is said of free air in this section will be shown to be of
quite general validity. The equations of continuity and motion
may in many cases be written down in exactly the same form
(1.07 and 1.08), although the constants p and K will have a dif-
ferent meaning; they will be dependent on several more or less
elementary properties of the medium and, finally, will have to bhe
considered as complex quantities.

In order to avoid confusion, all symhols relating to free air
will, when necessary, be provided with an index zero, as was done
in this section: p,, K,, v,, Wy, Co.

A very important way of application of absorbing materials is
the direet fixing of a layer of such material to a rigid back wall.
In this case the impedance at the front side was shown to be
(cf. § 2)

2 == W coth L (1.03)

Substituting the general expressions for W and y of (1.10) and
(1.11) yields

t=VEKp coth julV /K (1.14)

as a general expression for the impedance of any layer backed hx
a rigid wall. We thave to make an exception for some porous
flexible layers. The question of the computation of K and
will be considered in §§ 7 to 1T § 6.

§ 4 GEOMETRY IN THE COMPLEX PLANE

The understanding of such formulae as (1.05) and (1.11) may
be facilitated by plotting the funetion coth +1 and -other complex
functions z of o in the complex plane. If we allow » to assume
all values from 0 10 « the function under consideration follows
a eertain contour in the complex plane. This curve, as a rule,
appeals more directly to our imagination than does an analytical
formula. The point is to separate the real from the imaginary part
so that z takes the form z(0) =u«(w) + jy(w), and to plot 2z in
the plane with z and y (belonging to the same value of the para-
meter o) 2¢ coordinates.

For example, the function z2=1-—jo is a straight line starting
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7

at the point x =1 of the real axis and going downwards (Fig. 3);

2=—exp (jo) =coSo + jsin o is the cirele with unit radius.
Multiplying a complex number by exp (je) means turning it

Y

.1’0 :
(1-jw)e!®]
l/
/
B
w - X
1
-
i Y-jo
A
Fig. 3

Complex representation of the circlé involute

round the origin through an angle ». So by multiplying the point
A (Fig. 3) by exp (j») we come to the point B and it is obvious,

N
AN
—a]

17

[

\\J
4w

Fig. 4.
Complex representation of a hyperbola and a lemniscate

that B lies on the involute of the cirele; hence z == (1 — ju) exp (ju)
15 the circle involute.

The funetion z2=V"1+F jo is represented by a rectangular
Liyperbola (Fig. 4), which may be proved as follows. Put z =z +
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ju=VT1+ jo and square: z*—y* + 2 jzy=1 + ju. Separating
the real from the imaginary parts shows us that 2*—y*=—=1 and
this is the common formula for the rectangular hyperbola. Further
2 ¥ = w; DOW since » is always positive z and y have the same
sign. The function /1 + ja is represented by the upper brar_xch
of the hyperbola, the lower branch being represented by | 4
The generalization z=< | Z8 + jf(w), where f(w) iz am arbitrary
real funection of o, leads to the same hyperbola but the w-scale 1
changed. This remark is oue of a general validity, we may al-
ways pass on to a new o-scale on the same curve by substituting
f{a) for .

Inverting a eomplex nunber z==M exp (jp) gives —1—=—1}-{-exp

—sJj¢), 80 the modulus is inverted, and the sign of the argument
is the opposite of the original one. As the lemniscate is the inverse
curve of the hyperbola the former is represented by the funetions
(1 = ju) -3 .

By inverting a straight line, one obtains, as is well known from
elementary geometry, a cirele. In Fig. 3 the inversion of the half
line 1 + jo is drawn as a half cirele running from the point z =1
on the real axis towards the origin.

More examples illustrating the simple geometrical representation
of functions by contours and vice versa may easily be obtained.

$ 5 GEOMETRICAL LKEPRESENTATION OF OOTH 4i

In Fig. 5 the function ecth 'yl is plotted with the aid of ! the _

formula
sinh 2 ol — jsin 2 Bl

cosh 2 al — cos82 B (1.15)

coth yl == coth (a + j8 =

for constant values of « and B. It looks like a logarithmic spiral.
And indeed, for large values of the argument, coth yl is approxi-
mated by a logarithmic spiral. We arrive at this result, because
for large values of yl, coth yI ~ 1 + 2exp (—291).

Leaving aside for the moment the shift over the distance 1
in the direction of the real axis, the function

* J. Rybner, Nomograms of Complex Hyperbolic Funetions, p. 25,
Copenhagen 1947,
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2 exp (— 2 yl) =2 exp (— 2 al) - exp (— 2 jAl)

represents a spiral with modulus M =2 exp (— 2 al). and argument
w=—- -2 Bl. Hence the relation between M and ¢ is

M=2exp (fB— ¢),

and this is, for a constant value of «/8, the usunal formula for

hoo
\
-
o

Tig. &
Complex representation of coth 4/

the logarithmic spiral in polar coordinates. It is-indicated by a
dashed curve in Fig. 5. In the same way it can be shown that
tanh yl converges towards the logarithmic spiral 1 —2exp (—20).

The geometrieal interpretation of the constant «/f is this,

arc tan g

- N

Fig. 6
The slope of coth y!

that it is the tangent of the “glope” of the spiral, which is
constant along the logarithmic spiral (Fig. 6). The greater «, the
greater the slope, and the more rapidly the function converges
towards its apex. Figs. 7 and 8 represent two eases with slopes 1
and 0.1 respeectively.
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For an arbitrary medium e« and 8 are both functions of o and
so is the slope o/B8. Taking ! as a constant, yl varies because of
the variations in « and 8 with ». In this general case we get a

1.04
05 14
0 +
! 2 o AL 3
¢
-10] A
{
154 1
ol
-20
Fig. 7 Fig. 8
A coth with slope 1, A coth with slope 0.1,
strong damping weak damping

modification of the logarithmic spiral with a slope varying aloug
the curve. In Fig. 9 the case o/f8 = const./w is illustrated; the

0251 /—\
055 078 Ums
-025+
12
-054
~0754
Fig. 9

A coth with a slope inversely proportional with frequency

slope approaches the value of zero for large values of w, the eon-
tour approaches to an asymptotic eirecle.
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Multiplication of coth yI by a complex number W = M exp jy
(ef. 1.05) means enlarging the contour by a factor M and rotating
it through an angle ¢ around the origin, as in the example of the
circle involute. Multiplication by a complex number W, which in
itself is a function of o, is accomplished by applying this process
for each point of the spiral, taking together corresponding points
(for the same value of ) of the multiplier W and coth yl. If W
does not run fast through the diagram, something resembling a spiral
may still be seen; if, on the other hand, W runs fast, the spiral
appearance may be lost, and a kind of damped sine eurve with
curved axis may result, this curved axis being the contour of W.

§ 6 GEOMETRICAL REPRESENTATION OF FORMULA (l1.12)

We shall now give a geometrical interpretation of (1.12)
=W,
T+ W,
We plot z in a complex plane and also plot the points W, and
— W, on the real axis. 2 — W, is the vector going from W, to z;
2+ W, is the vector going from — W, to 2z, and the complex
reflection coefficient is the quotient of these two veetors. Now in
general the quotient of two vectors

(1.12)

M exp (o) M,

M., exp (jo,) - M,
is a veetor with an absolute value equal to the ratio of the
absolute values of the two original veetors and an argument equal
to the differences of the arguments.

Hence the absolute value of p,/p; is the ratio of the two vectors,
shown in Fig. 10, its argument, i.e., the phase angle by which Pr
1s ahead of p;, is the angle A in fig. 101

The absolute value of r and therefore, the value of the ab-
sorption eoefficient @, =1 —|r|? remains constant along contours
for which M,/M,==constant and from elementary geometry we
know that these contours are cireles. For 100 % absorption M, = 0,
and the circle reduces to the point W, (Fig. 11). On the other hand

exp { j(¢; — ¢,) }

! In accordance with usage in electrotechnies we demote the real part of =z
by R, its imaginary part by X, Y being reserved for the admittance ¥ — 1/z.
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we also know from elementary geometry that the locus of point 2
with the same value of A is also a circle, now going through the
point W, and — W, (Fig. 11). Moreover the two sets of circles

x K
7e
1 M

My
/{ oy
-Wo +Wo

Fig. 10
Modulue and argument of the complex refleetion eoefficient r
(equation 1.12) in the e-plane

X 103 20%

Fig. 11
The complex reflection coefficient 7 in the impedance plame,
phase jump A and absorption coefficient a,, the cirele diagram



