

Great Ideas in Computer Science

A Gentle Introduction | ,

Alan W. Biermann

et

The MIT Press
Cambridge, Massachusetts
London, England '

| /\E L7 /D\‘) /a f - —

. . S S

Preface .

This is a book about computers—what they are, how they work, what they can do and wh t they
cannot do. It is written for people who read about such topics as silicon chips or artificial
intelligence and want to understand them, for people who need to have data processed on the job
and want to know what can and cannot be done, and for people who see the proliferation of
computers throughout society and ask about the meaning of it all. 1tis written for doctors, lawyers,
preachers, teachers, managers, students, and all others who have a curiosity to learn about
computing. Itis also written for computer science students and professionals whose education
may not have covered all of the important areas and who want to broaden themselves.

I'was asked in 1985 to create a course in computer science for liberal arts students, and I decided

that it was my job to present, as well as I could, the great intellectual achievements of the field.
These are the “great ideas™ that attract the attention of everyone who comes near and that, when
collected together, comprise the heart of the field of computer science. Thave spent considerable
time in the succeeding years gathering together materials that capture these results.

What are the “great ideas” of computer science? The first and most important is the idea of the
algorithm—a procedure or recipe that can be given to a person or machine for doing a job. The
other great ideas revolve around this central one; they give methodologies for coding algorithms
into machine readable form, and they describe what can be and what cannot be coded for machine
execution. They show how concepts of everyday life can be meaningfully represented by
electrical voltages and currents that are manipulated inside a machine, and they show how to build
mechanisms to do these computations. They also show how to translate languages that people can
use comfortably into languages that machines use so that the machine capabilites are accessible.
They show how human-like reasoning processes can be programmed for machine execution, and
they help us to understand what the ultimate capabilities of machines someday may become.

But it would seem that these great ideas are too comiplex and too technical to be understood by
nonspecialists. Typically, a computer science major studies several years of mathematics and a
tong list of computer courses to learn these things, and we should not expect ordinary people to
pick them up reading a single book. How can we meaningfully condense such extensive studies
into a volume that many people can understand? ' .

xii : ‘ Preface

The answer is that the ideas must be reformulated in substantial ways, huge amounts of
nonessential detail must be removed, and the vocabulary of the studies must be chosen carefully.

Consider, for example, the traditional coverage of computer programming ifi a computer science -

curriculum. The student is taught all of the syntactic features of some programming language,
numerous implementation details, and a variety of applications. We know that if we teach all of
- these things, there will be no time in the course for anything ¢lse. Students who want a broader
view of the field than just programming will be frustrated. The treatment in this book teaches only
a few of the features of Pascal, and all programs are restricted to those constructions. Most of the
important lessons in programming can be taught within these limitations, and the reader’s
confusion from broad syntactic variety is eliminated. As another example, the traditional
treatment of switching circuit design involves extensive study of Boolean algebra-—equations,
minimization, and circuit synthesis. But one can teach the most important ideas without any
Boolean algebra at ali. One can still address a design problem, write down a functional table for
the target behavior, and create a nonminimal switching circuit t» do the computation. The whole
issue of circuit minimization that electrical engineers spend so much time on need not concern the
general reader who simply wants to learn something about computers. Similar rather major

revisions have been made to the traditional treatment of all computer topics. Thus we have Pascal

without pointers, transistor theory without potential barriers, compilation without code optimi-
on, computability theory without Turing machines, artificial intelligence without LISP, and
so forth.

But all of these revisions have been made for a good reason. The goal is to give readers access
to the essentials of the great ideas in one book. Readers learn to write a variety of programs in
Pascal, design switching circuits, kearn the essential mechanisms of transistor theory and their
implementation in VLSI, study a variety of von Neumann and parallel architectures, hand
simulate a compiler to see how it works, learn to classify various computations as tractable or
intractable, gain an understanding of the concept of noncomputability, and come ;o grips with
many of the important issues in artificial intelligence.

Of course, the presentation to nonspecialists must be done carefully in other ways as well. For
example, it is important in the early chapters to introduce topics with motivating material. Each
chapter on programming begins with a computational problem, and the lessons in programming
are presented as a way of solving the problem. Also, much attention has been given to the choice
of vocabulary. For example, computer scientists tend to use the word “move” in places where
ordinary English speakers would say “copy.” So the word “move” can cause confusion and has
been banned from the book except where it is the only correct word. Dozens of other common
vocabulary words have been similarly filtered where they might cause confusion, or they have
been carefully defined when they are specifically required.

Another issue concerns the use of mathematical notations when the reader may not be
experienced mathematically. The philosephy followed here is that such notations are essential
1o the study and that they must be included. The reason that a person reads a book in computer
science is to study the field, and many of the things worth studying are notations. One of the great

- Preface xiii

. benefits of the study may be that a person who feels alien to formal notations, in fact, may become

quite comfortable with them. The book introduces relatively few notations, explains them in
considerable detail, and uses them repetitively so the reader can become comfortable with them.

Finally, one might ask whether the “great ideas” presented here are the same as those that would
be chosen by other authors. In fact, while one would expect some variations in opinions, there
is considerable agreement about what constitutes the field of computer science. The central
themes presented here are probably the same as would be chosen by most experts. As an
illustration, one can examine the “intellectual framework for the discipline of computing” as
given by the Task Force on the Core of Computer Science: “Computing as a Discipline” by Peter
J. Denning (Chairman), Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A.
Joe Turner, and Paul Young.* This report presents a view of the field and makes recommenda-
tions related to proper cornputer science education. Among the contributions of the report is 2
description of nine subareas that the authors propose cover the field. They are

1. Algorithms and data structures

. Programming languages

. Architecture

Numerical and symbolic computation
Operating systems

Software methodology and engineering
Database and information retrieval systems
. Artificial intelligence and robotics

. Human-computer communication

I N O

This book presents an introduction to most of the nine subareas. The notable exceptions are
“operating systems” and some issues related to “human-computer communication.” Space
limitations prevented the inclusion of operating systems except that they are mentioned, and their
function is briefly described in chapter 10. Human-computer communication via natural
language is discussed but no mention of computer graphics is included. But except for these few
omissions, the contents of this book are in agreement with the views of the committee.
Instructors of classes may find that this volume covers more material than they can fit into a
single course. In this case, coverage can be limited, for example, to the first two thirds of the book
with only one or two lectures allocated at the end for overviewing advanced topics. This yields
a course on programming and a study of how computers work. Another way to accelerate the
study is to cover the switching, transistor studies, and VLSI in a single lecture, and then to spend
about half of the course on chapters 9 through 14. There is a third way to use the book thai is

* Peter J. Denning (Chairman), Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe
Tumer, and Paul R. Young, “Computing as a Discipline,” Communications of the ACM, Volume 32, Number
1, January, 1989; also in Computer, Volume 22, Number 2, February, 1989.

Xiv ‘ Preface

applicable when students have already learned programming from another source. In this case,
coverage can begin at chapter 5 and proceed to the end. 1 have used many variations of these
strategies in my own course. I usually do not cover recursion or the C-ranked sections of the
translation and noncomputability chapters becayse they are difficult for my students.

Itis a pleasure to acknowledge the contributions of many individuals to the preparation of this
book. I, first of all, am grateful to the Duke University Department of Computer Science which
has given me an exciting environment and plenty of support for scholarly endeavors over the last
fifteen years. I, secondly. would like to thank my several hundred students in this course who
taught their instructor that he could not incluMe all the things he wanted. They convinced me that
I would have to remove much of the material that I dearly loved if any of it were to be understood,
and they explained the problems with vocabulary: ['might think I was using simple nontechnical
vocabulary but the words | was using meant something else to thém. This book is as much an
accomplishment of these patient young people as it is of mine. 1 am especially appreciative of the
efforts of Craig Singer who did a brilliant job as a Teaching Assistant over two years and Michael
Hines and Jothy Rosenberg who taught the course other semesters. These people were sensitive
to student difficuities and made excellent suggestions for improving the coverage. An early draft
of the book was circulated for review among professors at other institutions during the 1987-88
academic year. 1 am very appreciative of many helpful comments by Shan Chi (Northwestern
University), David Frisyne (University of Michigan), Rhys Price Jones (Oberlin College), Emily
Moore (Grinnel College), Richard E. Pattis (University of Washington), Harvey Lee Shapiro
(Lewis and Clark College), Jill Smudski (at that time University of Pennsylvania), and eight
anonymous reviewers. On the basis of these reviews and the classroom experiences, the book was
reorganized and rewritten. ,

The new version of the book was brought to the classroom in the fall of 1988, and 1 would like
to thank Ronnie Smith for contributing the excellent chapter on VLS. Tam again grateful to my
" students who filled out questionnaires on four occasions helping me find weak points in the
explanations and to my Teaching Assistant, Albert Nigrin, for his help. I would also especially
like to thank Elina Kaplan who spent countless hours on some of the early chapters finding ways
to improve the presentation. Where simplicity and clarity occur in these chapters, much is owed
to Elina. Many other individuals pave contributed by reading chaptcrs and making suggestions.
These include Heidi Brubaker, Dania Egedi, Linda Fineman, Chris Gandy, Curry Guinn, Tim
Gegg-Harrison, Barry Koster, Anselmo Lastra, Ken Lang, Albert Nigrin, Lorrie Tomek, Tom
Truscott, and Doreen Yen, [am especially appreciative of errors found and suggestions made by
David M. Gordon. Henrv Greenside, Donald Loveland, and Charlie Martin. Many other friends
have made suggestions and commented on the chapters.

The book has heen given much of its personality by Matt Evans who created the cartoons at the
beginnings of the chapters. lam extremely appreciative of his efforts. I amtremendously indebied
to Ann Davis who typed the manuscript from my handwritten pages. Her diligence and accuracy
greatly eased the burden of creating the book. 1 would also like to thank Marie Cunningham for
typing some of the chapters and Denita Thomas for preparing the index. Barry Koster was kind

Y Y

Preface ’ XV

enough to.generate a large number of the figures, Eric Smith helped me on numerous occasjons
‘with library work, and Lorrie LeJeune of The MIT Press did the excellent job of typesetting. 1
would also like to express my heartfelt thanks to Robert Prior, Harry Stanton, and the other editors
at The MIT Press who understood the dream of my book from the beginning and who have
strongly supported my efforts. Finally, I would like to thank my wife, Alice, my daughter,
Jennifer, and my son, David, for their enthusiasm and encouragement on this project.

g

Studying Academic Computer Science:
An Introduction

Rumors

Computers are the subject of many rumors, and we wonder what to believe. People say that
computers in the future will do all clerical jobs and even replace some well-trained experts. They
say computers are beginning to simulate the human mind, to create art, to prove theorems, to learn,
and to make careful judgments. They say that computers will permeate every aspect of our jobs
and private lives by managing communication, manipulating information, and providing enter-
tainment. They say that even our political systems will be altered—that in previously closed
societies, computers will bring universal communication that will threaten the existing order, and

.in free societies, they will bring increased monitoring and control. On the other hand, there are
skeptics who point out that computer science has many limitations and that the impact of machines
has been overemphasized.

Some of these rumors are correct and give us fair warning of things to come. Others may be
somewhat fanciful, leading us to worry about the future more than is necessary. Still others point
out questions that we may argue about for years without finding answers. Whatever the case, we
can be sure that there are many important issues related to computers that are of vital importance,
and they are worth trying to understand. '

We should study computer science and address these concerns. We should get our hands on
amachine and try to make it go. We should control the machine; we should play with it; we should
hamness it; and most important, we should try to understand it. We should try to build insights
from our limited experiences that will illuminate answers to our questions. We should try to arm
ourselves with understanding because the computer age is upon us.

This book is designed to help people understand computers and computer science. It begins
with a study of programming in the belief that using, controlling, and manipulating machines is
an essential avenue to understanding them. Then it takes the reader on a guided tour of the machine
internals, exploring all of its essential functioning from the tiniest movements of electrons through
semiconductors to the architecture of the machine and the software that drives it. Finally, the book
explores the limitations of computing, the frontiers of the science as they are currently understood.

xviii Introduction

In short, the book attempts to give a thorough introduction to the field with an emphasis on the
fundamental mechanisms that enable computers to work. It presents many of the “great ideas”
of computer science, the intellectual paradigms that scientists use to understand the field. These
ideas provide the tools ta help the reader comprehend and live with machines in the modern world.
", Studying Computer Science

4

Computer science is the study of recipes and ways to carry them Qut. A recipeis a procedure or ~
method for doing something. The science studies kinds of recipes, the properties of recipes,

languages for writing them down, methods for creating them, and the construction of machines

that will carry them out. Of course, computer scientists want to distinguish themselves from chefs,
* so they have their own name for recipes—they call them algorithms. But-we will save most of
the technical jargon for later.

If we wish to understand computer science, then we must study recipes, or algorithms. The first
problem relates to how to conceive of them and how to write them down. For example, one might
want a recipe for treating a disease, for classifying birds on the basis of their characteristics, or
for organizing a financial savings program. We need to study some example recipes to see how
they are constructed, and then we need practice writing our own. We need experience in
abstracting the essence of real-world situations and in organizing this knowledge into a sequence
of steps for getting our tasks done.

Oncc we have devised a method for doing something, we wish to code itinacomputer language
in order to communicate our desires to the machine. Thus, it is necessary to leam a computer
language and to learn to translaté the steps of a recipe into commands that can be carried out by
a machine, This book will intfoduce a language called Pascal which is easy to learn and quite
satisfactory for our example programs.

The combination of creating the recipe and coding it into a computer language is called
programming, and this is the subject of the first third of the book, chapters 1 to 5. These chapters
give a \)ariety of examples of problem types, their associated solution methods, and the Pascal
code, the program, required to solve them. The final chapter in the sequence discusses the

problems related to scaling up the lessons learned here to industrial sized programming projects.”

While the completion of the programming chapters leads to an ability to create useful code, the
resulting level of understanding will still fall short of our deeper goals. The programmer’s view
of a computer is that it is a magic box that efficiently executes commands, and the internal
mechanisms may remain a mystery. However, as scholars of computer science, we must know
something of these mechanisms so that we can comprehend why a machine acts as it does, what
its limitations are, and what improvements can be expected. The second third of the book
addresses the issue of how and why computers are able to compute.

Chapter 6 shows methods for designing electric circuits and how to employ these techniques
to design computational mechanisms. For example, the reader is shown how to build a circuit for
adding numbers. Modern machines are constructed using semiconductor technologies, and
chapters 7 and 8 tell how semiconductor devices operate and how they are assembled to produce

itfoduction . xix

application circuits. Chapter 9 describes computer architecture and the organization of typical
computers. Chapter 10 addresses the problem of translation of a high level computer language
like Pascal into machine language, so that it can be run on the given architecture. An example at
the end of chapter 10 traces the significant processing that occurs in the execution of a Pascal
language statement from the translation to machine language, through the detailed operations of
the computational circuits, to the migration of electrons through the semiconductors.

The final chapters of the book examine the limitations of computers and the frontiers of the
science as it currently stands. Chapter 11 discusses problems related to program execution time
and computations that require long processing times. Chapter 12 describes an attempt to speed
up computers to do larger problems, the introduction of parallel architectures. Chapter 13
discusses the existence of so called noncomputable functions, and chapter 14 gives an introduc-
tion to the field of artificial intelligence.

An Approach for Nonmathematical Readers
A problem arises in the teaching of computer science in that the people who understand the field

tend to speak their own language and use too much mathematical notation. The difficulties in
communication lead the instructors to the conclusion that ordinary people are not able to

understand the field. Thus, books and the university courses often skirt the central issues, and .

instead, teach the operation of software packages and the history and sociology of computing.

This book was written on the assumption that intelligent people can understand every
fundamental issue of computer science if the preparation and explanation are adequate. No
important topics have been omitted because of their difficulty. However, tremendous efforts were
made to prune away unnecessary detail from the topics covered and to remove special vocabulary
except where careful and complete definitions could be given.

Because casual readers may not wish to read all the chapters, the book is designed to encourage
dabbling. Readers are encouraged to jump to any chapter at any time and read as much as is of
interest. Of course, most chapters use some concepts gathered from earlier pages and where this
occurs, understanding will be reduced. The programming chapters 1 through 4 are highly
dependent on each other, and the architecture chapter (9) should be read before the translation
chapter (10). Also, some of the advanced chapters (11 through 14) use concepts of programming
from the early chapters (1 to 4). Except for these restrictions, the topics can probably be covered
in any order without much sacrifice.

All of the chapter sections are classified as either A, B, or C again to encourage readers to taste
much and devour only 1o the extent desired. Chapter sections labelled A include only introductory
material and make few demands on the reader. One can get an overview of the book in a single
evening by reading all the A sections. The B sections are the primary material of the book and
may require substantial time and effort to read. The reader who completes the B material in a
chapter will understand the major lessons on that topic and need feel no guilt about stopping at
that point. The C material answers questions that careful readers may ask and supplements the
main portions of the book.

XX / Introduction

Readings

For overview of computer science:
3

Brookshear, 3. G., Computer Science, An Overview, Second Edition, Benjamin/CtImmings
Publishing Company, Menlo Park, California, 1988. -

Goldschlager, L., and Lister, A.,Computer Science, A Modern Introduction, Prentice-Hall, New
York, 1988. ‘ :

Schaffer, C., Principles of Computer Science, Prentice-Hall, Englewood Cliffs, New Jersey,
1988, -

Pohl, L, /and Shaw, A., The Nature of Computation: An Iniroduction to Computer Science,
Computer Science Press, Rockville, Maryland, 1981.

For philosophical discussion:
Bolter, J. ?., Turing’s Man, University of North Carolina, Chapel Hill, North Carolina, 1984.

-

Contents

Preface «xi]
Studying Academic Computer Science: An Introduction xvii

1 An Introduction to Programming: Coding Decision Trees 1
Good News (A)* 1
Decision Trees (B) 2
Getting Started in Programming (B) 7
Reading and Storing Data (B) 12
Programming Decisioh Trees (B) 19
Turbo Pascal Summary (C) 29
Summary (By 35
Readings 35.

2 Text Manipulation and Algorithm Design 37
What is Text Manipulation? (A) 37 ennri i
Algorithms and Program Design for Text Manipulation (B) 39
String and Integer Data Types (B) 43 ‘
More Text Manipulation (B) 46
Programming Text-Editing Functions (B) 52
Building the Editor Program (B) 56
Building a Conversation Machine (C) 62
Turbo Pascal Summary (C) 64
Summary (B) 65
Readings 66

* Each section is labeled A, B, or C depending on whether i1t contains introductory, regular or optional
material.

viii.

~ Computer Organization (B) 176

Numerical Computation and a Study of Functions

Let Us Calculate Some Numbers (A) 69
Simple Calculations (B) 70

Functions (B) 76

Looping and a Study of Functions (B) 78
Searching For the Best Value (B) 83
Storing Information In Arrays (B) 89
Finding Sums, Minima and Maxima (B) 96
Patterns in Programming (B) 100

Putting Things in a Row and a Special Characieristic of Functions (B) 102
Putting the Functions in a Row (C) 103

Summary (B) 105
Readings 107

-

Top-Down Programming, Subroutines, and a Database Application 109
Let Us Solve a Mystery (A) 109

Top-Down Programming and the Database Program (£) 110
Subroutines (B) 113

Subroutines with Internal Variables (B) 121

Subroutines with Array Parameters (B) 125

Subroutine Communication Examples (B) 128

.Storing and Printing Facts for the Database (B) 132

Representing Questions and Finding Their Answers (B) 135
Assembling the Database Program and Adding Comments (B) 139
Another Application: The Towers of Hanoi Problem (B) 146

A Program to Solve the Towers ot Hanoi Problem (C) 149
Recursion (C) 154

Summary (B) 159

Readings 161

Software Engineering 163

The Real World (A) 163

Lessons Learned from Large-Scale ngrammmg Projects (B) 164
Software Engineering Methodologies (B)

The Program Life Cycle (B) 169

Summary (B) 171

Readings - 172

Electric Circuits 175
How Do Computers Work? (A) - 175

Circuits for Computing Primitive Functions (B) 177
Circuits for Computing Complex Functions (B) 184
Relays (B) 189

Qontents

10

11

Circuitg for Storing Information (B) 192
The Binary Number System (B) 195

A Circuit for Adding Numbers (B) 199
Summary (B) 202

Readings 203

" Transistors 205

In Search of a Better Switch (A) 205

Electron Shells and Electrical Conduction (B) 206
Engineering Conductivity (B) 209

Transistors (B) 211

Building Computer Circuits with Transistors (C) 213
Summaiy (B) 218

Readings 218

Very Large Scale Integrated Circuits 221
Building Smaller and Faster Computers (A) 221
VLSI Technologies (B) 223

Fabrication (B) 234

Design (C) 240

Future Prospects for VLSI (A) 248

Readings 249

Machine Architecture 251

Let Us Build a Computer (A) 251

An Example Architecture: the P88 Machine (B) 253
Programming the P88 Machine (B) 256

Summary (B) 261

Readings 263

Language Translation 265

Enabling the Computer to Understand Pascal (A) 265
Syntactic Production Rules (B) 266

Semantics (B) 271

The Translation of Looping Programs (C) 281
Programming Languages (B) 289

Some Pragmatics of Computing (B) 294

Summary (B) 296

Readings 299

Program Execution Time 301

On the Limitations of Computer Science (A) 301
Program Execution Time (A) 302

Tractable Computations (B) 302

M

12

13

14

Appendix: The Rules for the Subset of Pascal Used in this Book 435

Intractable Computations (B) 309

Some Practical Computations with Very Expensxve Solutions (B)

Summary (B) 318
Readings 319

Parallel Computation 321

Using Many Processors Together (A) 321

Paralle]l Computation (B) 321

Communicating Processes (B) 327

Parallel Computation on a Saturated Machine (B) 331
Variations on Architecture (B) 334

Connectionist Architectures (C) 336

Learning the Connectionist Weights (C) 342
Summary (B) 348

Readings 349

Noncomputability 351

Speed is Not Enough (A) 351

On the Existence of Noncomputable Functions (B) 351
Programs That Read Programs (B) 357

Solving the Halting Problem (B) 360

Examples of Noncomputable Problems (B) 365
Proving Noncomputability (C) 369

Summary (B) 373

Readings 373

Artificial Intelligence 375

The Dream (A) 375

Representing Knowledge (B) 377
Understanding (B) 383

Learning (B) * 390

Frames (B) 394

An Application: Natural Language Processing (B) 396
Reasoning (B) 402

Game Playing (B) 412

Game Playing: Historical Remarks (C) 417
Expert Systems (B) 419

Perspective (B) 425

Summary (A) 429

Readings 430

Index 439

Ea

o

"“‘{? ;‘3,,‘, por

An Introduction to Programming:
Coding Decision Trees

Good News (A)*

In the-old-days before computers, if we wanted to do a job, we had to au the job. But with
computers, one can do many jobs by simply writing down what is to be done. A mawwine can do
the work. If we want to add up some numbers, search for a given fact, carefully format ana prua
adocument, distribute messages to colleagues, control an industrial process, or other tasks, wecan
write down arecipe for what s to be done and walk away while amachine obediently and tirelessly
carries out our instructions. If we wish, the machine will continue working while we sleep or go
on vacation or do other jobs. Our recipe could even be distributed to many computers, and they
could allwork together, carrying out the instructions. Even after we retire from this life, computers
may still be employed to do the same jobs followmg the commands that we laid down.

The preparation and writing of such “recipes” is called programming, and it implements a kind
of “work amplification” that is revolutionizing the society of man. It enables a single person to
do a finite amount of work, the preparation of a computer program, and to achieve, with the help
of computers, an unbounded number of results. Thus, our productivity is no longer simply a
function of the number of people; it is a function of the number of people and the number of
machines we have. -

There is even more good news: computers are relatively inexpensive, and their costs are
continuously decreasing. Machines with 64,000 word memories and 1 microsecond instruction
times cost $1 million two decades ago, $100,000 a few years ago, and $1000 or $2000 now. For
the cost of one month of a laborer’s time, we can purchase a machine that can do some tasks faster
than a thousand people working together. The power and importance of the computer revolution
are clear. ,

We wish to study computer programming in this book so that we can experience the work
amplification that computers make possible. We will study programming by learning fundamen-
tal information structures and processing techniques. We will do problem solving using these
ideas and develop expertise in abstracting the essence of problem situations into machine code so
that our jobs can be done for us automatically.

* Each section is labeled A, B, or C depending on whether it contains introductory, regular or optional material,

