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Preface

The special theory of relativity is often considered as irrelevant to the
macroscopic physics of ordinary material systems. The range of
velocities, pressures and temperatures encountered under terrestrial
conditions is such that the differences between the Newtonian and
relativistic theories are negligibly small. Either theory can thus be
used, and as the Newtonian theory is usually considered to be the
simpler, it is the one usually adopted. But is the Newtonian theory
actually the simpler of the two? This depends on what one is trying to
do. Ballistic calculations are undoubtedly made more complicated by
the use of relativistic formulae in place of the corresponding New-
tonian ones, but special relativity has more to offer than nuisance
factors of /(1 —-v*/c?). The aim of this book is to show that an under-
standing of the basic laws of macroscopic systems can be gained more
easily within relativistic physics than within Newtonian physics. The
speed of the systems concerned is irrelevant. Even equilibrium ther-
modynamics gains by being seen from a relativistic viewpoint.
The book is not directed towards any particular university course.
1t tries to show the unity of dynamics, thermodynamics and electro-
magnetism under the umbrella of special relativity, and it should be
accessible to any second year undergraduate in mathematics or
physics. The emphasis throughout is on the extraction by systgmati?
development of & maximum of information from a minimum o
assumptions. With this in mind, the first chapter lays minimal’
physical foundations for the special theory of relativity and explores
its relationship to Newtonian physics. The assumption that the speed
of light is independent of the motion of the observer is found to be -
unnecessary. A prior knowledge of special relativity is not essential .
‘but an acquaintance with its basic ideas will be helpful. The second
chapter lays the mathematical foundations needed for the subse
‘quent development. The remaining three chapters develop the
foundations of particle and continuum dynamics, and the thermo-
dynamics and electrodynamics of fluids, within this relativistic frame-
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work. Fluids are studied in preference to solids as they are conceptually
simpler. As four-dimensional spacetime techniques are used through-
out, much of the theory can be taken over into general relativity with
little alteration. .

The S.I. system of units that is now widely adopted for the
presentation of formulae in electromagnetism does not combine
naturally with the four-dimensional tensor formulation that is used in
special relativity. For this reason Gaussian (c.g.s.) units have been
used instead for the development of electrodynamics in Chapter 5.

Chapters are divided into sections, and equations are numbered
consecutively within each section. These numbers run continuously
through the subsections into which some sections are divided, thus
§4 of Chapter 5 has subsections labelled 4a to 4c and equations
numbered (4.1) to (4.42). Sections and equations within the current
chapter are referred to simply by these numbers. References to sec-
tions and equations of another chapter are prefixed by the chapter

.number and a hyphen, thus §4a means subsection a of section 4 of the
current chapter but §4-1 means section 1 of Chapter 4. Reference to
publications is by author and year. Details of these publications are
given in a list at the end of the volume. -

This book was begun during leave of absence from Churchill
College, Cambridge, for the academic year 1974/75. I am grateful
to Churchill College for financial support during that period, and to
the Department of Physics and Astronomy, University College -
London, for its hospitality during it. I would also like to thank my
wife for her patience and constant encouragement during my writing
and typing of the book.

March 1978 - o ‘ . W.G. Dixon
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1
The physics of space and time

1 Introduction

The special theory of relativity has its historical origin in a study of
electromagnetic phenomena. It takes its name from its denial of the.
concept of absolute motion and the consequent recognition that only
relative motion has any physical significance. However, it does recog- -
nize & preferred class of observers who are in uniform motion relative

to one another, even though it denies that it is meaningful to ask which

of them is at rest in any absolute sense. Hence the qualification

‘special’, the hope being that-it would ultimately be superseded by a

theory in which all observers are treated as equivalent. :

At the time that the special theory was being developed, around the
beginning of this century, it was believed that all forces in nature
would ultimately be reducible to electromagnetism and gravitation.
With the success of the special theory in resolving the conflicts that
had existed between Newtonian dynamics and Maxwell’s electro-
magnetic theory, it became natural to try to fit gravitation into this
new physical framework. That this proved so difficult seems perhaps
more surprising now than it did at that time. It is now realized that the
ultimate structure of matter is considerably more complicated than
was suspected seventy years ago, when the quantum theory was still
in its infancy and even the Bohr theory of the atom was still in the
future. Although the forces that oceur within the atomic nucleus are
not yet fully understood, tremendous progress has been made, and
underlying it all is the basic framework provided by the special theory
of relativity. This isindeed the main strength of the theory. The fact
that it predicts modifications of Newtonian dynamics for particles’
whose speeds are comparable with that ef light is important, but its
real achievement has been in providing a foundation on which almost
the whole of modern physical theory has been built. However, this
increasing scope of the special theory has also seemed to increase the
apparent perversity of gravitation in refusing to be fitted into this
growing structure.

5505866



2 , THE PHYSICS OF SPACE AND TIME [Ch. 1

A study of the foundations of the special theory should reveal the
origins of its limitations as well as of its successes. Gravitation must
thus be expected to play a distinetive part in such a study, inasmuch
as the reason for its exclusion from the theory should become clear.
But althoughit isexcluded from the theory, it cannot be excluded from
the laboratories in which terrestrial physical experiments are per-
formed. To understand the validity of the special theory in such ecir-
-eumstances, some knowledge is required of the modifications which
are reqmred to allow for thé presence of gravitation. These modifica-
tions form the basis of the general theory of relativity, so named because
Einstein considered that these same modifications also place all
observers on an equal footing.

The programme of the present chapter is to give a physical basis for
the mathematical models of space and time used in relativity theory.
For the reason given above, both the special and general theories will
be considered. The mathematical and physical developments of the
subsequent chapters will however be confined to the special theory.
The physical results used will be ones which hold also in Newtonian
theory. Consequently no details will be given of the experimental
evidence in their support — the success of the Newtonian theory over a
wide range of conditions is sufficient evidence in itself. When such
results are particularly simple and have far-reaching implications,
they may be dignified with the description ‘principle’. This is not
intended as a claim that they are ‘obvious’, but instead that they are
firmly supported by the success of Newtonian theory. It will not be
necessary to assume the constancy of the speed of light. This speed,
‘¢’ is a fundamental constant of nature which is not primarily con-
nected with electromagnetic phenomena, and a development based
on properties of light gives electromagnetism an unnecessary proml-
nence.

2 Frames of refererice

It is quite impossible to make any physical statement at all without
some implicit assumptions about the nature of space and time. The
best that can be done in an investigation of these fundamental con-
cepts is to try to be as explicit as possible about the assumptions that
are being made. Our first task must thus be to provide ourselves with a
language with which we can discuss the physical world, and whichis as .
free as possible from undefined terms. This involves setting up frames
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of reference, and hence requires an examination of the concept of such
a frame. o

Until the advent of the theory of relativity, space and time were
believed to be independent and absolute. In the historical develop-
ment of special relativity, absolute time was the first of these to fall. By

“assuming the constancy of the speed of light, and examining the
praotical process of synchronizing clocks using light rays, Einstein
showed in 1905 that simultaneity is not an absolute concept-—it
depends on the motion of the observer. The concept of an absolute
space with a fixed three-dimensional Euclidean geometry survived
for a further three years, although it was necessary to ascribe rather
peculiar behaviour to rods and clocks in motion in order to retain it.
But in 1908, Minkowski (1908a) showed that the natural framework
within which to express special relativity is to consider space and time
united to form a single four-dimensional continuum. To quote him in
translation: ‘Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only & kind of union of
the two will preserve an independent reality.’ :

This union will be taken as our starting point. It may not seem much
of an assumption, as no particular geometry is yet being ascribed to
this spacetime continuum. So it is worth a pause to consider just what
are the assertions about the physical world that are hidden within it.
There are essentially two. The first is that space and time are con-
tinuous, which may be questioned in the light of the quantum nature
of s0 much of physics. The second is that if two events appear coinci-
dent in both space and time to one observer, then they appear so to
every other observer. It is difficult to envisage the implications of this

" being false, but it is not logically impossible. No attempt will be made
here to justify these assumptions, but it is good to make clear that they
are there as the basis of our subsequent development.

Since our everyday language and experience is based on a separate
space and time, it is necessary to begin by considering in general terms
how this separation is made by a scientific observer. The qualitative
nature of this separation as perceived by our senses will be accepted
withoutanalysis. But a scientific observer must make this quantitative.
His first step must be to make a clock. It is convenient to envisage this
as a hand turning continuously around a graduated dial, together with

"a counter to count complete revolutions. The hand should turn
smoothly (an intuitive concept based on the assumed continuity of
time), but until some dynamics has been put into our theory, we
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cannot ask that it should turn uniformly as this is a concept that needs
further definition. With this clock he can ‘time’ events in his immed-
iate locality, but before he can ‘time’ distant events, he must decide
on an operational definition of simultaneity for widely separated
events. ' "

Having done 0, he can unambiguously say ‘when’ any event occurs,
but not ‘where’ it occurs. To do this, he needs also to decide what is
meant by the same point of space at different times, i.e. he needs a
standard of ‘rest’. The ‘where’ of an event then becomes meaningful,
but for him to be able to communicate this information to anyone
else, he must also set up a spatial coordinave system. Again, such
coordinates are naturally required to vary smoothly from place to
place (also supposed intuitive), but apart from this, all that can be
said is that three coordinates will be required to specify a location
uniquely. (It is perhaps worth noting that one could get away with only
a single spatial coordinate if the smoothness requirement were
dropped, e.g. by interleaving the decimal expressions of three smooth
coordinates so that (0-114, 0-225, 0-336) becomes 0-123123456, but
since physical measurements cannot be made with infinite precision,
non-smooth coordinate systems are useless for physical purposes.)
When this has been done, he will have set up a complete coordinate

. gystem for the spacetime continuum which enables every event to be
uniquely specified by four coordinates, three being spacelike and one
timelike. _

To clarify the procedure, we give an example of a way in which these
various constructions may be made. It is not intended, however, to be
any more fundamental than any other method. This is the radar
method. Suppose the observer sends out a pulse of light at time ?,,
which is reflected by a distant object and arrives back at the observer
at time #,. Then the instant of reflection is allocated a time coordinate

1=}, +1¢,) and a radial distance » = (t;—1,). The direction of the
reflected pulse may be specified by two angular coordinates (6, ¢)
which together with » make up the three spatial coordinates of the
object at the instant of reflection. The rest state is then characterized
by the constancy of the spatial coordinates. If one wishes to envisage
" the measurement of the angular coordinates, one can think of the
observer as being surrounded by a transparent sphere with a grid of
latitude and longitude lines marked on it.

In this example the coordinate system is constructed first and the

definitions of simultaneity and of rest then follow in the obvious way.
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Although this is likely to happen in practice, it is conceptually pre-
ferable to think of simultaneity and rest being defined before the
coordinates are constructed. For these are clearly physical concepts,
while coordinates belong to mathematics. It will be useful to try to
keep track of what belongs to mathematics and what to physics in
the initial development of the theory, and for this purpose a distinc-
tion will be drawn between the physical concept of a frame of
reference and the mathematical one of a coordinate system. This will
be abstracted from common usage, which makes such a distinction
even though it is seldom made explicit.

The coordinate system concept is simple, although coordinates will
be allowed which are more general than those used in elementary
physics. All that is essential in a coordinate system for spacetime is
that there should be four coordinates, each of which varies smoothly,
and independently of the other three. This degree of generality is
necessary for the time being as so little has so far been assumed about
the physical world. The preferred coordinate systems usually used in
special relativity and in Newtonian physics can only be introduced
after further physical assumptions have been made. But more of this
later.

One other feature of these generalized coordinate systems is that it
will not necessarily be assumed that the whole of spactime is covered
by a single nondegenerate coordinate system. Sometimes it is simply
convenient to use coordinate systems with degenerate points, e.g. plane
polar coordinates (r, #), where the origin is degenerate as & is indeter-
minate there. In this case degeneracies could be avoided by the use of
Cartesian instead of polar coordinates. But in other circumstances one
may have no choice in the matter. On the surface of a sphere, for
example, there is no coordinate system which covers the whole surface
without degeneracy. Hence, to avoid any implicit assumptions about
the global topological structure of spacetime, coordinate systems will
be allowed which cover only a portion of spacetime. If one considers
operational definitions of coordinate systems such as the radar method
described above, in a finite time it is possible to survey only a finite
volume of space, and so such coordinates are naturally restricted in
this way.

If, in this same example, the observer decided to transform from the
polar type of coordinate system that he has constructed by direct
measurement to a rectangular type of coordinate system by the mathe-
matical transformation 2 = rsinfcos¢, y = rsinfsing, z =rcos b,
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this would not usually be considered as a change of reference frame.
But if he set his transparent sphere, with its angular grid, in rotation
(relative toits initial state—absolute rotation has not yet been defined),
one would say that he was then using a frame of reference that was
rotating relative to the initial one. Viewed as coordinate transforma-
tions, the difference between these two cases is that in the latter case
the transformation of the spatial coordinates is time-dependent, while
in the former case it is not. If this is taken as a characterization of
those coordinate transformations which are not regarded as changing
the corresponding reference frame, then what is left as belonging.
specifically to the reference frame is just the observer together with .
the definitions of rest and simultaneity.

This enables us to talk meaningfully about space and time sep-
arately in a given reference frame, but that is about all it does allow.
Too much has been removed, and what is left is of little use. It would
be preferable to leave some structure in the reference frame which is
unaffected by a change from rectangular to polar coordinates, but
which, say, makes it meaningful to talk about uniform motion in a
straight line. This may be achieved by giving a suitable geometric
structure to space and, more trivially, also to time. This does not
involve any new assumption about the physical world, as no ‘reality’
will be attributed to the geometry. It is just a step in the construction
of a language with which to discuss physical phenomena. One possible °
geometric structure for time is provided by any arbitrarily constructed
clock, or equivalently by the time coordinate of any spacetime coordi-
nate system. Two time intervals are simply defined to be equal when
such a clock measures them as equal. The clock also gives a unit of
time, which when taken together with this definition of equality of

“interval gives time the metric structure of the real line.

An equally arbitrary construction will be used for the spa.tla.l
geometry. If a suitable spacetime coordinate system is given, each of
‘the three-dimensional spaces of constant time can be considered as
having that three-dimensional Euclidean geometry in which the
given spatial coordinates are rectangular Cartesmn These coordinates
also prov1de a unit of length for this geometry. The description

‘suitable’ is intended to allow for the possibility that some coordinate
systems may be better interpreted as, say, spherical polar than
rectangular Cartesian, To include these in the procedure, they should
first be transformed to a corresponding rectangular system before the
geometry is abstracted.
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. Theframe of reference associated with the coordinate system will be
taken as consisting of (a) the definitions of rest and of simultaneity
which are used to separate space and time, (b) the corresponding metric
structure for time, which includes a unit of time, and (c) the corres-
ponding three-dimensional Euclidean geometry for space, together
with its unit of length. For conformity with our allowing coordinate
systems covering only a portion of spacetime, frames of reference
must similarly be allowed in which these geometric structures also
only cover portions of space and time. The initial step discussed above
is now complete, for all the language permitted by this rich structure

~ can now be used unambiguously, while the underlying assumptions

as to the nature of space and time have been made explicit.

The above construction, which proceeds from a coordinate system
to a reference frame, raises the question of the extent to which such a
, frame determines the coordinate system from which its geometric
. structure was abstracted. Let us sa.y that (z, y, z, t) are natural coordi-

nates for a frame if:

(i) Simultaneity of two events corresponds to equahty of ¢,

(ii) The state of rest corresponds to constancy of (z,y,2),

(ili) (z,y,2) are rectangular Cartesian coordinates in space, which
agree with the length unit of the frame, and

(iv) ¢ measures time consistently with the metric structure given by
the frame. o

‘Then the original coordinate system is a natural one, but the frame
alone does not distinguish it from any other natural coordinate
system. It is convenient to write the coordinates (r,y,z) as a (3 x 1)
column vector x. We see that a second coordinate system (x*,¢*) is
natural for some frame if and only if it is related to a given natural
coordinate system (x, ¢) for that frame by a transformation of the form

X*=Ax+a, t*=t+k, (2.1)

where 4 is a (3 x 3) orthogonal matrix, a is a (3 x 1) celumn vector and
k is a scalar. For future reference it should be emphasized that 4, a and
% are constant, and thus in particular independent of time. Geometri-
cally, a and & represent a change of origin in both space and time,
while 4 describes a rotation or reflection of the spatial coordinate
axes. :
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3 Newtonian conceptions

Let us now consider in more detail the assumptions underlying New-
tonian dynamics, as only by so doing can we fully appreciate the ori-
gins of the special theory of relativity. As has already been remarked,
underlying all Newtonian thought is the concept of absolute time.
This comprises more than a belief in the meaning of absolute simul-
taneity for spatially separated events. It also implies a métric struc-
ture for time, so that the equality of two time intervals is also a primi-
tive undefined concept. Once absolute simultaneity is assumed,
‘space’ becomes absolute in the sense of being the same for all obser-
vers. Based on the idealization of the perfectly rigid rod as a measure
of distance, Newtonian physics also implicitly assumes that the
geometry of space as surveyed with such rods is Euclidean.

For the time being, let us not question these assumptions, but
instead investigate the dynamical laws based on them. It is then
possible to restrict attention to those frames of reference which are
compatible with these natural geometries for both space and time, and
with fixed but arbitrary units of both length and time. Such frames
will be said to be allowable. 1t is easily seen that the relation between
the natural coordinates of any two such allowable frames must have

where again k is constant, but now the orthogonal (3 x 3) matrix 4
and the (3 x 1) column vector a may be time-dependent. Conversely,
if two frames have natural coordinates which are so related, and if one
of them is allowable, then so is the other.

It is here that the explicit development of Newtonian dynamics
starts. Its first step is to pick out a subset of the allowable frames which
are dynamically privileged, by means of the Principle of Inertia,
otherwise known as Newton’s First Law of Motion. This states that:
There exists a famaly of reference frames in which any particle unll
continue in its state of rest or of untform motion tn a straight line unless it
be compelled by some external force to change that state.

Such frames are said to be inertial. )

Suppose now that (3.1) connects two inertial frames. Then the state
of pniform motion X(t) = v+ c must correspond to uniform motion
in the second frame for all values of u and c. But it follows from (3.1)
that &x* A d4

@ = g WO +2 g udgE,



