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Prelace

Digital signal processing is now enjoying an explosive growth. Applications
are found everywhere, including radar, sonar, seismic processing, com-
munications, radio astronomy, and medical electronics. Digital signal
processors —digital computers specializing in signal processing—are in
development and on the market. All of this growth creates demand for even
more digital signal processing—massive antounts in some applications.

One way to satisfy part of the demand is to choose cleverly designed
algorithms. Instead of expanding the processor performance from one
million multiplications per second to five million multiplications per second
for some new task, a way might be found to organize the computations of
the new task so that one million multiplications per second suffice. There is
now a large body of theory available that can be used to attack a problem in
this way. This theory is well understood by-the theoreticians of the field, but
the day-to- Jlay design engineers often ignore-it because it is not yet orga-
nized into an integrated course of study. It requires considerable familiarit«
on the part of the designer to select the best algorithm for an application
from the bewildering assortment of algorithms that are now known for fast
convolution and for the fast Fourier transform.

This book is the product of a course entitled “Fast Algorithms for
Digital Signal Processing” that the author has taught both at Cornell
University and for IBM. The course was designed for electrical engineers in
their senior year or first year of graduate study. The goal of the course wiis
to produce engineers who can comfortably apply the techniques. This is the
first goal of the book.

The second goal is to provide a broad view of the state of development
of the field of fast signal processing algorithms that can stimulate fresh
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viii Preface

developments in the future. By integrating all the threads, many things
become much more evident. For example, by posing the treatment of
the Cooley-Tukey, Good-Thomas, and Winograd fast Fourier transforms
in an arbitrary field, relationships between many later ideas are easy to
understand.

I belie e that it is important to distinguish between a fast algorithm, the
function it computes, and the application in which it is used. These are
distinct elements and, when they are allowed to run together, can lose their
clarity. Therefore 1 insist on the distinction between a discrete Fourier
transform and a fast Fourier transform. The first is a transform, and the
second is an algorithm for computing the first. Likewise, the Viterbi
algorithm is nos a maximum-likelihood sequence estimator; it is an
algorithm for computing a minimum distance path through a trellis, a path
that may be a maximum-likelihood path for some application but need not
be. Even then, the definition of the maximum likelihood should not be con-
fused with an algorithm for computing its path. In keeping with this
philosophy, throughout the book there is little discussion of applications. A
computational task is stated, and then full attention is given to the problem
of finding a good computational algorithm. Discussions of applications of
digital signal processing must be found elsewhere.

The idea for this book came while I was writing my earlier book,
Theory and Practice of Error-Control Codes. Many parts of that book dealt
with fast algorithms for computation in a finite field, but the algorithms ac-
tually did not depend on the field. 1 felt that it would be worth the effort to
put the algorithms into one book, divorced from their application and
presented in a broader setting that includes the many other algorithms of
importance in digital signal processing. The treatment touches on many
areas of computer science and the theory of algorithms. However, the em-
phasis is on the engineering goals of finding the best algorithms for signal
processing. Asymptotic analyses are of secbndary interest.

This book uses branches of mathematics that the typical reader with an
engineering education will not know. Therefore all of these mathematics
topics are developed here, and all theorems are rigorously proved. I feel that
if the subject is to mature and stand on its own, the necessary mathematics
must be a part of such a book; appeal to a distant authority will not do.
Engineers cannot confidently advance through the subject if they are fre-
quently asked to accept an assertion or to visit their mathematics library.
The mathematics needed for the study of fast algorithms is contained in
Chapters 2 and 5. These chapters can be read quickly at first but returned to
frequently as needed. .

One shortcoming that some readers will see in the book is the lack of
commentary on practical applications of the algorithms. Issues such as
wordlength requirements, roundoff error, and running time of algorithm A
on computer B are treated hardly at all. This is a conscious decision because
I am not wise enough to make broad statements along these lines. The few
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studies 1 have seen of such issues always treat narrowly defined problems,
and I distrust any general conclusions based on the available data. I feel that
the designer needs to assess these items in the context of the problem and
should study the literature directly to see how other designers fared.

JOf the algorithms discussed in this book, many are already important in
practice. Others will become important in the future as the applications of
. digital signal processing become more diverse and more massive. Other
methods, perhaps, will never be useful. The intent of this book is to provide
a broad survey. It is the design engineers of the next several decades who
will decide which of the techniques are important.

The heart of the book is in the cyclic convolution algorithms of
Chapters 3 and 7 and the Fourier transform algorithms of Chapters 4 and 8.
Chapters 7 and 8 are the multidimensional continuations of Chapters 3 and
4, respectively, and can be read immediately thereafter if desired. The study
of one-dimensional convolutions and Fourier transforms is only completed
in the context of the multidimensional problems. Chapters 2 and 5 are
mathematical interludes; some readers may prefer to treat them as appen-
dices, consulting them only as needed. Chapters 6 and 9 can be read in-
dividually following Chapters 3 and 4. The remainder, Chapters 10, 11, and
12, are in large part independent of the rest of the book. Each can be read
independently with little difficulty.
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CHAPTER 1
Introduction

" lgorithms for computation are found everywhere,
and efficient versions of these algorithms are highly
valued by those who use them. We are mainly con-
cerned with certain types of computations, namely,

" those related to digital signal processing, including
tasks such as digital filters, discrete Fourier trans-
forms, correlation, and spectral analysis. Our pur-

pose is to present the modern techniques for digital implementation of
these computations. We are not concerned with the design of the tap
weights of a digital filter; our concern is only with the computational
organization of its implementation. Nor are we concerned with why one
should want, for example, a discrete Fourier transform; our concern is only
with how it can be computed efficiently. Surprisingly, there is an extensive
body of theory dealing with this highly specialized topic.

1.1 INTRODUCTION TO FAST ALGORITHMS

An algorithm, like most other engineering devices, can be described either
by an input/output relationship or by a detailed explanation of its internal
construction. When one applies the techniques-of digital signal processing
to a new problem, one is concerned only with the input/output aspects of
the algorithm. Given a signal, or a data record of some kind, one is con-
~cerned with what should be done to this data, that is, 'with what the output
of the algorithm should be when such and such a data record is the input.
Perhaps the output is a filtered version of the input or its Fourier transform.
These input/output relationships for an algorithm can be expressed

1
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2 INTRODUCTIGN

mathematically without prescribing in detail all of the steps by which the
calculation is to be performed.

Devising such a good algorithm for an information processing prob-
lem, from this input/output point of view, may be a formidable and
sophisticated task, but this is not our concern in this book. We will assume
that we are given an inpiit/output algorithm described in terms of filters,
Fourier transforms, interpolations, decimations, correlations, modulations,
histograms, matrix operations, and so forth. All of these can be expressed
with mathematical formulas and so can be computed just as written. This
will be called the obvious implementation.

One may be content with the obvious implementation; for many years
most were content, and even today some are still content. But once people
began to compute such things, other people began to look for more efficient
ways to compute them, This is the story we aim to tell, the story of fast
algorithms. By a fast algorithm, we mean a detailed description of a compu-
tational procedure that is not the obvious way to compute the required out-
put from the input. A fast algorithm usually gives up a conceptually clear
computation in favor of one that is computationally efficient.

Suppose we need to compute a number 4 given by

A=ac + ad + bc + bd

As written, this requires four multiplications and three additions to com-
pute. If we need to compute A many times with different sets of data, we
will quickly notice that

A= (a+ b)c + d)

is an equivalent form that requires only one multiplication and two addi-
tions, and so is to be preferred. This simple example is quite obvious but
really illustrates most of what we shall talk about. Everything we do can be
thought of in terms of the clever insertion of parentheses in a computational
problem. But in a big problem the fast algorithms cannot be found by in-
spection. It will require a considerable amount of theory to find them.

A nontrivial yet simple example of a fast algorithm is complex multipli-
cation. The complex product

(e + jf) = (a + jb) - (c +jd)

can be written in terms of real multiplications and real additions
e = (ac — bd)
S = (ad + bo)

We see that these formu'as require four real multiplications and two real ad-
ditions. A more efficient “algorithm” is

(a — b)d + a(c — d)
(@ — b)d + b(c + d)

e

S

\..
.
;
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1.1 Introduction to Fast Algorithms J

whenever multiplication is harder than addition. This form requires three
real multiplications and five real additions. If ¢ and 4 are constants for a
series of complex multiplications, then the terms ¢ + d and ¢ —~ d are con-
stants also and can be computed off-line. It then requires three real multipli-
cations and three real additions to do one complex multiplication.

We have traded one multipiication for an addition. This ¢an be a
worthwhile savings, but only if the signal processor is designed to iake ad-
vaniage of it. Some signal processors have been designed with a prejudice
for a complex multiplication that uses four multiplications. Then the advan-
tage of the improved algorithm is wasted.

We can dwell further on this example as a foretaste of things to come.
The complex multiplication above tan be rewritten as a matrix product

4-6 b
Lf d R4
where the vector [ajl represents the complex number @ + jb, the matrix

b
I_C —ﬂ represents the complex number ¢ + jd, and the vectorre]re re-
sents the complex number e + jf. The matrix-vector product is a way to
represent complex multiplication.
The alternative algorithm can be written in matrix form as

(c - d) 0 o] 0
R IR | A
0 0 d il -1
The algorithm can be thought of as nothing more than the unusual matrix

factorization:

_ c-d o0 olfi o
[; C]:[(‘)(l’}] 0 (@+d ollo 1
0 0 dlll -1

We can abbreviate the algorithm as

[ = o]

where A is a 3 by 2 matrix that we call a matrix of preadditions; Disa 3 by 3
diagonal matrix that is responsible for all of the general multiplications; and
B is a 2 by 3 matrix that we call a matrix of postadditions.

We shall find that many of the best computational procedures for con-
volution and for the discrete Fourier transform can be put into this factored
form of a diagonal matrix in the center on each side of which is a matrix
whose elements are 1, 0, and — 1. These fast algorithms will have the struc-
ture of a batch of additions followed by a batch of multiplications followed -
by another batch of additions. ’



4 INTRODUCTION

The final example of this introductory section is a fast algorithm for
multiplying matrices. Let

C = AB

where A and B are / by n and # by 1 matrices, respectively. The standard
method for computing the matrix C is

C;jzzaikbkj f=1,...,1
k=1 j=1...,m

which requires n/m multiplications and (n — 1)/ additions as it is written.
We shall give an algorithm that reduces the number of multiplications by
almost a factor of two but increases the number of additions. The total
number of operations increases slightly.

We use the identity

a]b] + a'zbz = (a.' + bz)(az + b[) - &y - b]bz

on the elements of A and B. Suppose that # is even (otherwise append a col-
umn of zeros to A and a row of zeros to B, which does not change the prod-
uct C). Apply the above identity to pairs of columns of A and pairs of rows
of B to write '

n/2

Cij = E (@1 + b Nai + bu-r)) -
k=1

=)

/2 /2
- E ik 1 Digk — E by, b i=1,...,1
k=1 k=1 .
Jj=1...,n

The computational savings results because the second term depends
only on i and need not be recomputed for each j and the third term depends
only on j and need not be recomputed for each i. The total number of multi-
plications used to compute matrix C is 3n/m + in(/ + m), and the total
number of additions is 3nlm + Im + (Gn — 1)(/ + m). For large
matrices the number of multiplications is about half of the direct method.

This last example may be a good place for a word of caution about nu-
merical accuracy. Although the number of multiplications is reduced, this
algorithm is more sensitive to roundoff error uniess it is used with care. By
proper scaling of intermediate steps, however, one can obtain computa-
tional accuracy that is nearly the same as the direct method. Consideration
of computational noise is always a practical factor in judging a fast algo-
rithm, although we shall usually ignore it. Sometimes when the number of
operations is reduced, the computational noise is reduced because there are
fewer sources of noise. In other algorithms, though there are fewer sources
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of computational noise, the answer may be very sensitive to one or more of
them, and so the computational noise in the answer is increased.

Most of this book will be spent studying only a few problems: the prob-
lems of linear convolution, cyclic convolution, multidimensional linear and
cyclic convolution, the discrete Fourier transform, multidimensional dis-
crete Fourier transforms, the solution of Toeplitz systems, and finding
paths in a trellis. Some of the techniques we shall study deserve to be more
widely used; multidimensional Fourier transform algorithms can be es:-e-
cially good if one takes the pains to understand the most efficient ones. For
example, Fig. 1.1 compares some methods of computing a two-dini.cnsional
Fourier transform. The improvements in performance come more »'» ly
toward the end of the list. It may not seem very important to reduc: the
number of multiplications per output cell from six to four after one has
already gone from 40 to six, but this can be a shortsighted view. It is an ad-
ditional savings and may well be worth the design time in a big system.

There is another important lesson contained in Fig. 1.1. An entry,
labeled the hybrid Cooley-Tukey/Winograd FFT, can be designed to com-
pute a 1000- by 1000-point two-dimensional Fourier transform with 40 real
multiplications per grid point. This example may help to dispel an unfortu-
nate myth that the discrete Fourier transform is practical only if the block-
length is a power of two. In fact, the signal proce'ssor‘geed not insist that the
customer can only have such a blocklength; good algorithms are available
for many values of the blocklength. '

—
Algorithm Muliiplications/ Pixel* Additions/Pixel
Direct Computation of
Discrete Fourier Transform 8,000 * 4,000
1000 x 1000
Basic Cooley-Tukey/FFT 40 60
1024 x 1024
Hybrid Cooley-Tukey/ .
Winograd FFT 40 72.8
1000 x 1000 '
Winograd FFT 6.2 91.6
1008 x 1008
Nussbaumer-Quandalle FFT 4.1 79 .
1008 x 1008

*1 Pixel = | output grid point

FIGURE 1.1 Relative performance of some two-dimensional Fourier transform
algorithms,



6 INTRODUCTION

1.2 APPLICATIONS OF FAST ALGORITHMS

Very large scale integrated circuits called chips are now available. A chip
can contain on the order of 100,000 logical gates, and it is not surprising
that the theory of algorithms is looked to as a way of efficiently organizing
these gates. Sometimes a considerable performance improvement can be
realized by choice of algorithm. Of course, a performance improvement can
also be realized by increasing the size of the chip or its speed. These {atter
kinds of improvements are more widely understood.

For example, suppose one devises an algorithm for a Fourier transform
that has only one-fifth the computation of another Fourier transform algo-
rithm. By using the new algorithm, one might realize an improvement that
can be as real as if one increased the speed or the size of the chip by a factor
of five. To realize this improvement, however, the chip designer must reflect
the architecture of the algorithm in the architecture of the chip. A naive
design can dissipate the advantages by increasing the complexity of index-
ing, for example, or of input/output flow. An understanding of the fast al-
gorithms described in this book will be required to obtain the best system
designs in the era of very large scale integrated circuits.

At first glance, it might appear that the two kinds of development— fast
circuits and fast algorithms —are in competition. If one can build the chip
big enough or fast enough, then it seemingly does not matter if one uses in-
efficient algorithms. No doubt this view is sound in some cases, but in other
cases one can also make exactly the opposite argument. Large digital signal
processors often create a need for fast algorithms. This is because one
begins to deal with signal processing problems that are much larger than
before. Whether competing algorithms for some problem have running
times proportional to n* or n* may be of minor importance when n equals 3
or 4; but when n equals 1000, it becomes critical.

The fast algorithms we shall develop are concerned with digital signal
processing, and the applications of the algorithms are as broad as the appli-
cation of digital signal processing itself. Now that if is practical to build a
sophisticated algorithm for digital signal processing onto a chip, we would
like to be able to choose such an algorithm to maximize the performance of
the chip. But to do this for a large chip involves a considerable amount of
theory. In its totality the theory goes well beyond the material that will be
discussed in this book. Advanced topics in logic design and computer archi-
tecture such as paralielism and pipelining must also be studied before one
can determine all aspects of complexity.

We usually measure the performance of an algorithm by the number of
multiplications and additions it uses. These measures are about as deep as
one can go at the level of the computational algorithm. At a lower level, we
would wish to know the area of the chip or the number of gates on it and the
time required to complete a computation. Often one judges a circuit by the
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area-time product. We will make no effort to give performance measures at
this level.because this is beyond the province of the algorithm designer.

The significance of the topics in this book cannot be appreciaied
without understanding the massive needs of digital processing applications
of the future. It is not possible even to guess at the size of such systems.
Suifice it to say that, at the present time, applications are easy to foresee
that require crders of magnitude more digital signal processing than current
technology can satisfy.

Over the last decade, sonar systems have become almost completely
digital. Though they process only a few kilohertz of signal bandwidth, these
systems can use tens of millions or even hundreds of millions of muitiplica-
tions per second and even more additions. Extensive racks of digital equip-
ment are needed for such systems, and ye: reasons for even more processing
are routinely conceived.

Radar systems also are becoming digital, but many of the front-end
functions are still done by conventional microwave or analog circuitry. One
needs to notice only that, in principle, radar and sonar are quite similar, but
that radar has 1600 or more times as much bandwidth, to see the enornious
potential for more digital signal processing in radar systems.

Seismic processing provides our principal method for exploration deep
below the earth’s surface. This is an important method of searching for
petroleum reserves. Many computers are already busy full time processing
the large stacks of data tapes, but there is no end to the computations
remaining.

Computerized tomography is now widely used to synthetically form im-
ages of internal organs of the human body by using X-ray data from muiti-
ple projections. Algorithms are under study that will reduce considerably
the X-ray dosage, but the signal processing requirements are far beyond
anything that is practical today. Other forms of medical imaging are under
study, such as those using ulirasonic data, nuclear magnetic resonance daia,
or particle decay data, that also use digital signal processing.

Nondestructive testing of manufactured articles such as castings is
possible by means of computer-generated internal images based on the
response to induced vibrations.

It is also possible in principle to enhance poor-quality photographs. Pic-
tures blurred by camera motion or out-of-focus pictures can be corrected by
signal processing. However, to do this digitally takes large amounts of
signal processing computations. -

Satellite photographs can be processed digitally to merge several images
or to enhance features, or to combine information received on different
wavelengths, or to create stereoscopic images synthetically. For example,
for meteorological research, one can create a moving three-dimensional
image of the cloud patterns moving above the earth’s surface based on a
sequence of satellite photographs from several aspects.



