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Preface

With the present-day availability of large scale digital computers comes the
possibility of numerically solving systems of partial differential equations never
attempted before. Even the simplest one-dimensional, time-dependent system
being run routinely on standard computers today would have required so
many man-hours of effort a few years ago that its solution was not even attempted.

The present volume of this series on computational aspects of physical
problems is concerned with current techniques for numerically solving problems
primarily in nonviscous, compressible fluid motion. These techniques have
been developed for solution on digital computers over a period of 15 years
or so. Some of the methods described are more useful than others; the methods
of limited use are included because we feel that in these early years of the
development of the computer as a mathematical tool, even the less successful
heuristic methods should be exposed to public view for consideration.

The first four chapters involve methods which use Lagrangian or Eulerian
coordinates, or a mixture of both in several space dimensions. The next two
chapters illustrate the use of some of these same techniques along with the added
complexity of elastic-plastic media. The two chapters which follow use the
method of characteristics in both one- and two-space dimensional problems.
The next chapter is devoted to the now well-known particle-in-cell method.
The last chapter is devoted to viscous incompressible fluid flow. It is included
because in it is discussed a new method for attacking such problems.

Volume 4 of this series will also be devoted to hydrodynamics, but from a
more applied point of view.

BERNI ALDER
SIDNEY FERNBACH
MANUEL ROTENBERG

June, 1964
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I. Introduction

THE FIRST HYDRODYNAMICAL INITIAL VALUE PROBLEMS that were tried
on a computer were one-dimensional (one space dimension, the added
time dimension always being understood). In one dimension the argu-
ments in favor of a Lagrangian over an Eulerian formulation are almost
overwhelming. Once Richtmyer and von Neumann had introduced
artificial viscosities into the theory, the production of a relatively accurate
and stable Lagrangian code was quite straightforward. Eulerian codes
in general are not as accurate and have additional troubles. When the
problem of interest contains several different materials they tend to
diffuse across material interfaces at nonphysical rates. A second difficulty
is that if the system is compressed, definition is lost due to the fixed-
in-space nature of the coordinates in Eulerian codes, in contrast to the
fixed-in-the-material nature of the coordinates in Lagrangian codes.
In general, the structure of-a problem can be better defined by Lagrangian
coordinates. These arguments all apply to the interior of the system.

1 This work was performed under the auspices of the U. S. Atomic Energy Commission.
1



2 WILLIAM D. SCHULZ

Occasionally the boundary conditions are such that it will be preferable
to use an Eulerian system, but this is rare.

With this Lagrangian background in one dimension, the first two-
dimensional codes were naturally Lagrangian also. All of the previous
reasons for preferring a Lagrangian formulation still hold true but one
of them has to be qualified. In two dimensions a new process enters in,
namely, turbulence. In one dimension, if one has a suitable Lagrangian
coordinate system, i.e., one tha¢ defines the system well, then as time
progresses it will usually continue to define the system well. In two
dimensions the situation is somewhat reversed. A Lagrangian coordinate
system that initially defines the system well everywhere will often
transform into one with areas of poor definition. Usually the trouble
can be attributed to ‘turbulence. Lagrangian codes give believable
results when the areas of poor definition are not significant to the general
behavior of the system. In the final section of this article there are a few
more comments on this subject, which are related directly to a small
sample problem given there.

The artificial viscosity of Richtmyer and von Neumann has been
generalized here into a tensor artificial viscosity in two dimensions.
This was done partly in an attempt to alleviate the turbulence problem
and partly just to produce a better representation of a shock. This
development had an interesting side effect. The tensor viscosity produces
equations for the one-dimensional cylindrical and spherical cases which
differ from those produced by the usual procedure of treating the
Richtmyer-von Neumann viscosity as a scalar. In practice these tensor
viscosity equations give different results for multiple shock systems
but are in essential agreement with the scalar viscosity equations for
single shock systems.

II. Definitions, Notation, and Transformation Relations

For convenience a few relations connecting Eulerian coordinates with
Lagrangian coordinates will be discussed first. Eulerian coordinates are
the opnes which are most familiar in physics. In addition, Eulerian
expressions serve as shorthand for longer Lagrangian equivalents. Before
differencing, of course, everything is put in Lagrangian form (see Fig. 1):

R(%, 1, t) = Eulerian coordinate, may be either Cartesian or cylindrical,
Z(k/1, t) = Eulerian coordinate, always Cartesian,

R = the vector (R, Z),
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k = Lagrangian coordinate,
{ = Lagrangian coordinate,

7 = Jacobian of transformation.

R —
F1c. 1. Lagrangian coordinate network for differencing.

If Rk - 9R/3k Rl aR/al th., then j == RL‘ZI - R;Zk = area
Jacobian.

Let

£ {R for cylindrical coordinates,
"~ {1 for Cartesian coordinates,

then a “volume Jacobian” may be defined as
J=2R.

Consider the conversion of an Eulerian derivative into a Lagrangian
derivative:

)

ok | 0 ol y &
(o= ) &+ (ox) 0

ok \ @ al \ o
(aZ)EZ+(62)57‘
Expressions for &k/2R, ..., 8l/3Z, in terms of R,, ..., Z, can be found
as follows. For arbxtrary g,

H

R
2R
2

Z

74 og
a = Regg aR tZigz
% _p %

az Risr t 2437 az



4 WILLIAM D. SCHULZ

Let g = k, then one can solve for 0k/0R and 0k/dZ. Similarly g =/
gives 2l/oR and &l/2Z. The result of this is

S L 8 4
éR i’ eR ~  j°
Sk R R
oz A
which gives
0 . L0 %8
8R j ek 5 B’
o _ _R2 R
oZ  j ek 5 @&

Define a vector R lagging R by 90° as the “‘normal vector” to R:

R = (Z, — R) = normal vector to R.

Note that

R1'§2=§1'§2, il'R2=_R1'ﬁ2-
A useful vector operator can be defined as
s © 2 172 & d
D [R, 55— R -37] == [;,ﬁ Ri) — 57 (ﬁk...)].
Then
Vf = Df,
1
vVi—Llp. (.
5D (&)
Lagrangian time derivatives, that is, partial derivatives with & and [
held fixed, will be written as follows:

u(k, 1) = %if= R, = R = R velocity,

vk, 1) = %%— =2,=2 =Z velocity,

u = the vector (u, v).
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At this point we can deduce some relations for later use:
i =Re- Ry,
Ji=Ry R +R, ‘R,
=R "Ry — R Ry,
=R u, — R, u, =D u.
In cylindrical coordinates

V-uz%-{-D-u.

Substituting from (1) for D - u, we obtain

vou-R i @

R R
Therefore

V-u:%'.

(1)

@

Since | =j for Cartesian systems, (2) reduces to (1) and thus is

valid for both coordinate systems.

To complete the discussion of the transformation relations, the
connection between Eulerian and Lagrangian time derivatives may be

deduced as follows.
Let g be an arbitrary function, then

% _%| , % %
2t~ oty TR X T oz 4
Thus
o o
5?:5;|R+(u-V).

Some further notation and definitions:

pressure,

density,

p~! = specific volume,

specific internal energy,

entropy,

p°J° = mass constant (a superscript 0 means ¢ = 0),

specific internal energy introduced through an external source,
Me.

I

Ehm 4+ v e
S

e
I



6 WILLIAM D. SCHULZ
II1. Conservation Equations

The differential formulation of the system is given in this section.
The various differential equations are commented on and related to
each other but not in any fundamental sense; that is, with the exception
of the development of an artificial viscosity, we assume the basic
differential equations are known and proceed from there. Thus
Egs. (3)-(6) are considered defining equations. Equations (7)-(9) are
relations deduced from these defining equations.

Mass equation:
r=JIM. 3

This follows directly from the mass conservation equation as it is
more usually written,

(P])t = O:
and therefore
] =g =M.

Differential momentum equation:
P 2 (pi 9 o] =
pu, + Vp + L[5 (RRg,) — 57 (RRup)]| = 0. ©

The hydrodynamic equations use a tensor artificial viscosity to
smooth out shock discontinuities; ¢, is to be thought of as a “one-
dimensional” viscosity associated with the R, direction while ¢, is a
‘“‘one-dimensional” viscosity associated with the R, direction.?

Internal energy equation:

O Oe(s) +p %"_; + "JA(Rz_'uk) + ‘IB(“R"C W) _ 0. (5)

EET ] ]

The equation of total energy conservation (7) demonstrates the self-
consistency of the terms containing g, and gz in the momentum and
internal energy equations.

Equation of state: The quantity p which appears in the conservation
equations is computed from a known function of € and . Thus one
has given equations (or tables) of the form

p=p). (6)

* A complete discussion of the tensor artificial viscosity will be found in Section IV.
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Total energy conservation equation: From the momentum and internal
energy equations, we have

_ Vp 10 0, A=
pu 3“: + T + M [g (RRI‘M) 7 (RRHB)}%
+p 3‘: — €(8)y + pri + %}4(1_21 ") + %}“’ (— ﬁk'ul)’ =0.
Rearranging and using
PTr = % = -_]—t- =V- u,

J

we obtain
plu v, + e — els)] = —u-Vp — pV -u

4 0 = q.R = _ou
- '7 'B_E(RquA) - T R, FTA
u 0 .= qR & ou
+—]— ’a‘j(RRkQB)“I'TRk Ok

Use
0 = o —
—uVp ¥ u= — V(o) = — 7 [ (RpR, ) — 5 (BpRy - w)]

and collect terms:

Pl + « —elh = —J | {0+ g (RR)) — o7 (0 + g)u - (RRY).

Integrate over a radian slice in cylindrical coordinates or over a unit
thick slab in Cartesian coordinates:

[oI7 e+ e aonmgaeai——[* [* 2o+ gu- (RR)) o

— 2 (e +gahu - (R, dkdi

This is the desired total energy conservation expression. Note that
9, and g, appear only in integrals over the boundaries of the system
as must be required for a satisfactory artificial viscosity.

Integrated momentum equation:
d | CR
EfMudkdl:fhmdkdl: -f]Vpdkdl—f-a-k-(RquA) dk di

+ f % (RR,q,) dk dl . (8)
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It is seen that ¢, and g, will again only appear in integrals over the
boundary of the system. This would not be true for a scalar q in the
case of cylindrical coordinates.3

Angular momentum equation:
d |
EIR % Mu dk dl = jR % Jpu, dk dl
= —[IRx (V) -R x%(}éﬁ,q,)
+ R x 'aa‘z (Rﬁkq3)$ dk dl
= — J'R X JVp dkdl——f%(R x R.Rq,) dk dl
+ [ 2 (R x ReRgg) dkdl
ol B
+ [ Ry x RiR(g, — gp) dk dl. 9)

For angular momentum things do not turn out so well. There is a
term containing (¢, — ¢p) which is integrated over the volume of the
system. This will be commented on in the next section.

IV. Tensor Artificial Viscosity

In order to integrate the hydrodynamic equations by replacing them
with finite difference equations, a mechanism must be introduced to
smooth out the discontinuities which occur when shocks are present.
Von Neumann and Richtmyer (1950) first solved this problem in one
dimension by introducing an artificial viscosity which spread shock
discontinuities out over a specified number of zones.

Essentially they constructed an artificial medium whose final behavior,
after experiencing smoothed-out shock waves, was sufhiciently like that
of the true medium that it could be used in physical equations in place
of the true medium.

This artificial medium was defined as follows: Consider a plane shock
in the R direction only, no motion in the Z direction. Under these

3 We are integrating over a radian slice in cylindrical coordinates. If the total volume
of the system were integrated over, then a scalar ¢ would also only appear in surface
integrals.



