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PREFACE

This small book began as a set of notes for use by chemical physics students
in a course that aimed to illustrate the results obtained from wave-mechanical
calculations on the electronic structure of first diatomic, and hopefully, then
polyatomic molecules. We hope that the book may serve as a reference for
researchers interested in the electronic structure of diatomic molecules as well
as provide background analyses of related concepts for undergraduate and
graduate students.

In Chapters 11-VI, the main outlines of needed theory are presented assimply
as possible. It is assumed that the reader has a background in the elements of
quantum chemistry. Detailed theoretical derivations are not given except very
briefly in Chapter I, which may be regarded as a theoretical introduction to the
later chapters. One might at first glance at Chapter I, then go on to Chapter II.

In later chapters, the emphasis is on ab initio calculations by SCF (self-
consistent-field) and multiconfiguration SCF molecular orbital methods. The
approach isin terms of linear combination of atomic orbitals (LCAO) methods,
with considerable emphasis on basis sets and on some details of configuration
mixing to secure electron correlation. The plethora of other methods that have
been and are being developed is mentioned only very briefly. Semiempirical
calculations are not discussed.
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X PREFACE

In Chapter II, on one-electron molecules, several topics are introduced that
are also relevant to later chapters but which can be well illustrated for the
one-electron case: LCAO and LCMAOQO approximations (MAQO, modified
atomic orbitals) and basis sets, electronic population analysis, spectroscopic
transition probabilities, and the nature of chemical bonding. In each succeeding
chapter, new features of theory that become prominent when two or more
electrons are present, or are important in hyvdrides, in homopolar molecules, or
in heteropolar molecules, are successively introduced. Hence for a given topic
in the Index, reference may be needed to more than one chapter.

The discussion and references are based largely on relatively recent papers,
but basic earlier work is first considered in each chapter. The aim is to empha-
size the best up-to-date work, through 1976. We apologize for references we
may have overlooked. For a much more complete bibliography covering older
work through 1973, see Richards et al. (Ref. 49 in Chapter 111). No systematic
attempt has been made to discuss all molecules on which ab initio calculations
have been made. Rather, what has been presented is intended to be illustrative,
although perhaps more comprehensive for heteropolar than for homopolar
molecules.

We have recently become aware of a small book (R. F. W. Bader, “An
Introduction to the Electronic Structure of Atoms and Molecules,” Clarke,
Irwin, & Co., Toronto, Vancouver, 1970) that complements ours in its clear
explanation and presentation of contour maps of molecular charge distribu-
tions and of the differences between these and corresponding atomic
distributions.
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CHAPTER I

INTRODUCTION

The main purpose of this book is to present a survey of the electronic
structure of molecules as elucidated by means of ab initio quantum-mechani-
cal calculations. New developments in the formal theory and the evolution
of sophisticated computing facilities during the past two decades have led to
innumerable important contributions to the basic understanding of molecular
structure. The significance of these contributions will be exemplified in the
discussion of results for representative molecules in the following chapters.
We begin with a short review of the primary methods used in the computa-
tion of molecular wave functions and of related properties. The reader is
referred to several representative sources for developments of the underlying
quantum-mechanical theories [1]. Schaefer [2a,b] provides useful surveys of
recent ab initio calculations, and has edited two volumes [2c] in a series on
theoretical chemistry containing many excellent articles on methods of elec-
tronic structure theory. For an introductory discussion of diatomic spectra
and structure, we suggest reference to Herzberg’s well-known book [3].

The electronic structure of any molecule can be briefly characterized by
giving an electronic configuration followed by a state symbol. The electron
configuration consists of a listing of symbols for all the occupied molecular
orbitals (MOs) in the order of decreasing strength of binding, with a super-
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2 I. INTRODUCTION

script denoting the number of electrons in the given MO. For example, the
ground-state electron configuration of N, is l6,210,220,%20,% 1n,*30,%,
while the state is 'Z,".

The MO symbols contain a serial number followed by a symbol for the
symmetry species; each type of nuclear symmetry is represented by a different
set of species symbols. For diatomic molecules, two types of symmetry exist—
D, for homopolar molecules and C, for heteropolar molecules. The same
symmetries occur for linear molecules in general.

For these molecules, the main species symbol indicates the value of the
characteristic quantum number A giving in units of 4/2n the magnitude |m|
of the orbital angular momentum m#/2n around the symmetry axis; the
symbols are o, 7, 8, @, ... for A =0,1,2,3,.... For D, molecules only, each
symbol also contains a parity subscript which indicates the symmetry (g for
even, u for odd) with respect to the operation of inversion of the wave func-
tion at the center of the molecule.

The state symbols are similar except that capital letters are used, which
represent the fotal orbital angular momentum Ah/27 around the symmetry
axis: X, I, A, ®, etc. However, there are two kinds of T states, Z* and £,
depending on whether the wave function does (£7) or does not (£*) change
sign on reflection in a plane (any plane) passing through the nuclei. So we
have £,*, 2,7, 2,%, Z,7, I, I1,, A,, A,, and so on. The state symbols also
are prefixed by a muitiplicity superscript which indicates the quantum num-
ber of the resultant spin S (1,2,3,4,... for S= 0,3, 1,... respectively).

The detailed forms corresponding to the MO symbols are often given as
LCAO (linear combination of atomic orbitals) expressions, or as linear com-
binations (LCSTF) of bits and pieces of AOs called STFs (Slater-type func-
tions—see Section A). The AOs themselves have familiar symbols such as
Is, 2s, 2p, 3s, 3p, and 3d, but when used in building MOs, a symbol to indi-
cate a particular value of 1 must be added, as for example in 2po, 2pr, 3da,
3dn, and 3dd. All s AOs are of type o (or g, if the symmetry is D,) and one
can write lsg, 2sa, etc., but the ¢ can be understood without writing it ex-
plicitly. STFs can be symbolized in the same way as AOs, for example
Is, 2s, 2pa, 2p=n, 2s, 3po, but it must then be understood that these symbols
now refer in general to pieces of AOs, not to complete AOs. Instead of
LCSTFs one can use LCGTFs or LCGLFs (see Section A). This can be done
because each STF can be approximated by a linear combination of Gaussian-
type functions (GTFs) or Gaussian-lobe functions (GLFs).

When one speaks of the electron configuration of a molecule, one is dealing
with an approximation. For an exact wave function, other configurations
must be mixed in.

The molecular wave functions from which the results here presented are
obtained are of three general types:



A. BASIS SETS 3

(a) Hartree—-Fock-Roothaan self-consistent-field (SCF) functions, each
of which is an antisymmetrized product (Slater determinant) of one-electron
functions called molecular spin orbitals (MSOs), each a product of a mol-
ecular orbital (MO) and a one-electron spin function; or in general a linear
combination of such Slater determinants (SDs), called a configuration state
function (CSF). Each CSF corresponds to a particular MO electron con-
figuration, which means a specification of the number of electrons in each
MO (here note that some MOs are degenerate); each MO is approximated
as a linear combination of, usually, atomic basis functions;

(b) extensive linear combinations of CSFs corresponding to the super-
position of different electronic configurations, commonly referred to as con-
figuration interaction (CI) or, preferable, configuration mixing (CM)!; or

(¢) more limited CM in the form of multiconfiguration self-consistent-
field wave functions (MCSCF), which are obtained by the simultaneous
optimization of the MOs of (a) and of CM coefficients corresponding to a
selected (usually small) set of configurations. After an MCSCF function is
obtained, it may be further improved by additional extensive CM.

A. BASIS SETS

The construction of good SCF MOs depends at present on having a well-
chosen basis set.? Finite linear combinations of basis functions can then be
used to approximate MOs to the desired level of accuracy within the limits
of present-day computer technology. The two most commonly used kinds of
basis functions are STFs and GTFs. The molecular basis set is usually formed
by centering STFs or GTFs at each of the constituent atomic nuclei and/or
sometimes at other points in regions near the nuclei. STFs are defined [6],
in spherical polar coordinates, by

Xﬁl = ]vSr"_1 exp(—'Cnlr)Ylm(BsqS), (1)
where n, I, and m are principal, azimuthal, and magnetic quantum numbers,

. an “orbital exponent,” Y,,, (8, ¢) a spherical harmonic, and N a normaliza-
tion factor such that

®© rr r2n
bt = f j f X sin 0 dep d0 dr = 1. @)
0 0 [8]

In Eq. (1) r is expressed in units of @, (atomic units). See Section II.C for
further discussion.

! Hartree objected to the term “configuration interaction” and proposed “superposition
of configurations™ instead. We feel that Roothaan’s term ‘“‘configuration mixing” meets
Hartree’s objection but has the advantage of being much briefer.

2 We should also mention recent investigations into the use of numerical methods for
use in molecular calculations, see e.g. Refs. 4 and 5.



4 I. INTRODUCTION

GTFs can be expressed [7] either in spherical polar coordinates as

Xl(l:;s = NGs r2n exp (_ Cnl ’.2) Ylm (0’ ¢)9 (3)
or in Cartesian coordinates as
XSi = Ng.x'y/z* exp[— Cijk(xz‘l')’z"“zz)]- 4)

In Egs. (1)~(4) the variables (r, 8, ¢) or (x, y,z) measure the displacement of
an electron from the point of reference of the basis function. GLFs are special
cases of Eq. (3) where only the exp(—{r?) portion is used and several are
centered at various positions in space in order to approximate the usual
s, p, d, etc., atomic functions [8a]. When used in molecular wave functions
GTFs are usually “contracted” [8], each of several GTFs being constrained
to have fixed ratios of their coefficients, with the same ratios in each MO.
The effective size of the basis set is thereby reduced, ideally with little loss
of accuracy.

Experience has shown that extended basis sets used in the accurate com-
putation of molecular wave functions are usually best set up by first adopting
optimum basis sets previously obtained for the respective atoms [9], and
adding “‘polarization functions,” which are either functions having higher
azimuthal quantum numbers than the occupied orbitals of the atoms [10]
or are functions centered in regions of space other than at the atoms [11],
or both. Calculations on Rydberg states of molecules in states with one or
more MOs that are larger than in the ground state require additional basis
functions with larger radial extents. For additional discussion on basis sets
and on STFs, reference should be made to Section 11.B.

B. HAMILTONIAN MATRIX ELEMENTS

A requirement common to both SCF-MO and CM procedures is the
evaluation of integrals or matrix elements of the basis functions with respect
to the terms in the nonrelativistic Hamiltonian. (Up to now, nearly all cal-
culations have been nonrelativistic.) For a molecule having 4 nuclei of
charge Z, and N electrons, the Hamiltonian, in atomic units (electronic
mass m,, electronic charge e, and 4/2x set to unity), is '

N N A N A
1 Z 1 Z,Z
B=— SV Z Tk — Lats 5
OO D D D 9
u w kM u<y HBY a<b @
where we have assumed that the nuclei are fixed in space. The terms in Eq.
(5) correspond, respectively, to the kinetic (T), nuclear attraction ),

electronic repulsion (G), and nuclear repulsion (¥'™), operators. The molecu-
lar wave function satisfying the Schrédinger equation

#Y = EV, (®)
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being an eigenfunction of 2, yields the total energy of the molecule as its
eigenvalue. Assuming that ¥ is normalized, we have

E = ¥R \Y) = Y|TY) + PP ¥ + CPIGIE) + V™. (7)

(The nuclear repulsion energy is a function only of internuclear distances,
which are assumed to be fixed.)

The initial step in the SCF-MO and CM methods is the computation of
integrals with respect to the basis functions and the 7, V™, and G operators.
It is well known that, because of certain permutational symmetries, a basis
set comprised of m functions leads to (m*+m)/2 T and V (*“one-electron™)
matrix elements and to (m*+2m>+3m?+2m)/8 G (“‘two-electron”) matrix
elements. These quantities are defined as

T, = <Xp[T‘Xq>’ 8)
Vos = GulV™ g, ©9)
Grars = Ap Xl Glte A5 (10)

where the subscripts p, ¢, r, and s label the basis functions y, which may be
centered at one or more nuclei or at various points in space. A third set of
one-electron integrals needed for the analysis comprise the overlap matrix

Spq = <Xplxq>‘ (1)

The matrix elements defined in Egs. (8)~(11) are machine-computed?® and
stored for use in the subsequent SCF-MO and CM procedures.

C. THE HARTREE-FOCK-ROOTHAAN EQUATIONS

MO theory was catapulted into extensive quantitative use with the de-
velopment of the matrix Hartree-Fock self-consistent field equations by
Roothaan in 1951 [12]. If it is assumed that the state of each electron in a
molecule may be represented by an MSO, the total wave function for an
N-electron molecular state which contains only closed shells of MOs is con-
structed as an antisymmetrized product, or Siater determinant, of MSOs,

Vi () - YN

Y= Wy, o Py = (NDHT12 Vi@ (2 - Y (2)
- 1 2 N = ! : |

(12)
Yi(N) (V) - Yy(N)

3 Several efficient integral evaluation programs are available from the Quantum Chemistry
Program Exchange, Indiana University.
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If we now assume that each MO ¢ may be approximated as a linear com-
bination of m basis functions y, (STFs or GTFs) and that there are n =N/2
doubly occupied MOs, then

o = ZmZpC{)i (13)

or in matrix notation
¢ = xc, (14)

where ¢ is a column vector of dimension n, y a row vector of dimension m,
and ¢ a matrix of m rows and »n columns. It is also required that the MOs
be orthonormal,

<‘/’J¢;> = 5«}': (15)

o'p = c'Sc =1, (16)

where S is the overlap matrix [Eq. (11)], é; the Kronecker delta, 1 the unit
matrix, and ' denotes the adjoint operation.
The total energy with respect to the MOs ¢; is now [Eq. (7)]

or

ESF =2y b+ Y (2Uy—Ky), 7
where XA ?
by = <Pl T+V™ (¢, (18)
1
Jy = <d’i(l)¢j(2)|;_l¢’i(l)d’j(2)>a (19)
I
Ky = <<f>i(1)¢j(2)|r—l¢j(1)¢;(2)>- (20)
12

In Egs. (19) and (20) the J; are designated as Coulomb and K as exchange
repulsion integrals relative to electrons 1 and 2.

To form the SCF equations the J; and K are first rewritten in terms of
the one-electron Coulomb (J,) and exchange (K,) operators:

1), = <¢,-<1>|%1¢,-<1>> $,). @1
Ri(2)$,2) = <¢,-<1)J%|¢j(l>> $:(2). 22)

The first-order variation of the total energy combined with the orthonormality
constraint imposed through the Lagrangian multipliers ¢; leads to the Hartree—
Fock-Roothaan SCF equations [12]

(F—&S)c =0, (23)



